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ABSTRACT
While the synthesis of natural sounding, neutral style
speech can be achieved using today’s technology, fast adap-
tation of speech synthesis to different contexts and situ-
ations still poses a challenge. In the context of variety
modeling (dialects, sociolects) we have to cope with the
problem that no standardized orthographic form is avail-
able and that existing speech resources for these vari-
eties are rare. We present recent approaches in the field
of cross-lingual speaker transformation for HMM-based
speech synthesis and propose a method for transforming an
arbitrary speaker’s voice from one variety to another one.
We apply Kullback-Leibler divergence for data mapping of
HMM-states, transfer probability density functions to the
decision tree of the other variety and perform speaker adap-
tation. A method to integrate structural information in the
mapping is also presented and analyzed. Subjective listen-
ing tests show that the proposed method produces speech
of significantly higher quality than standard speaker adap-
tation techniques.
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1 Introduction

Speech synthesis of language varieties is a basis for many
application scenarios where a natural and realistic persona
design is necessary. We have been investigating this topic
in the last years [1]. Here we consider the problem of va-
riety transformation, where we transform speech data of
speaker A in variety V1 to a model of speaker A in variety
V2, without having V2 data from speaker A. For exam-
ple, Standard Austrian German speech data of a speaker
could be used to build a Viennese dialect voice model for
the same speaker.

This method can be applied in language learning sce-
narios, where a user can listen to his / her own voice in a
variety that he / she wants to learn. The modeling tech-
niques developed here can further be applied to accented
speech. Our modeling technique exploits the fact that there
is a significant overlap between the modeled varieties V1
and V2.

In previous and current projects we recorded and an-
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Figure 1. HMM-based speech synthesis system (HTS).

notated phonetically balanced speech data in different Aus-
trian varieties from Vienna (VD) [2], Innervillgraten - East-
ern Tyrol (IVG), Bad Goisern - Upper Austria (BG) [3] and
Standard Austrian German (AT). In our current work we
are focusing on the Eastern Tyrol dialect from Innervill-
graten (IVG). In this paper we evaluate the transformation
from Standard Austrian German (AT) to Innervillgraten di-
alect (IVG).

Related work in the field of language transforma-
tion [4, 5, 6] will be described in Section 3.

2 Speaker-adaptive acoustic modeling

Figure 1 shows a block diagram of the HMM-based speech
synthesis system (HTS) used for speaker adaptation. As
our basic system we used a version published by the
EMIME project1. The system input in the training phase
consists of a training set of speech signal waveforms and
corresponding labels. Labels contain symbolic representa-
tions (phones) of the speech signal content and contextual
information like phonetic or linguistic features. This input

1EMIME - http://www.emime.org/



is then used to train Hidden Markov Models (HMMs). In
the synthesis phase, labels are used to synthesize a corre-
sponding speech signal from the models. New labels can be
generated from text using methods of text analysis. Multi-
ple speakers can be combined in an average voice model
and speaker adaptation can then be used to derive the voice
of a specific speaker from it [4, 5, 6].
For our experiments we employ 5-state Hidden Semi-
Markov Models (HSMMs) [7]. We extract 40 mel-
frequency cepstral coefficients [8], fundamental frequency
F0 (modeled as multi-space probability distribution [9])
and a set of 25 band-limited aperiodicity measures [10]
from the speech signal. Also, dynamic features were used
to improve continuity of the generated speech spectra [11].
The decision-tree based context clustering technique as de-
scribed in [12] and as available in HTS has been used to
share model parameters across multiple contexts. We use
different sets of decision tree questions for each variety.
These are partially handcrafted as well as automatically
generated from our phone set definitions.

3 Language transformation

Recently, different methods for cross-lingual transforma-
tion have been developed. The goal is to transform data
in language L1 to language L2 while retaining the original
speaker characteristics. These methods operate on different
levels.

3.1 Frame-level transformation

Qian et al. [13] developed a method that operates on the
frame level. Using frequency warping to perform voice
conversion, the voice of a speaker in L2 is converted to
the voice of another speaker in L1. This method of trans-
forming the voice of a speaker is also known as vocal tract
length normalization (VTLN) [14]. In a second step, the
waveforms generated from the acoustic model trained on
the frequency warped data are used to guide a waveform
unit selection process.

3.2 State-level transformation

Wu et al. [15] propose a state-level adaptation method.
They use Kullback-Leibler Divergence (KLD) to generate
a mapping between probability density functions of aver-
age voice models of L1 and L2. They describe two alter-
native approaches called data mapping and transform map-
ping. In data mapping, the KLD-mapping is applied to the
adaptation data (in L1) and then speaker adaptation is used
to generate transforms from the L2 average voice to the
mapped adaptation data. In transform mapping, first trans-
forms from the L1 average voice to the adaptation data are
generated. Then the transforms are attached to the mapped
state models in L2. As our work is based on a data mapping
approach, this procedure will be described in more detail in

the Section 4.2. Liang and Dines [16] propose an extended
method. They apply a decision tree to cluster the proba-
bility density functions into phonetic categories. Mapping
is then restricted to only occur within these clusters. They
report a reduction of mel-cepstral distortion and subtle im-
provements detected during subjective listening tests.

3.3 Phone-level transformation

Wu et al. [17] also proposed a phone level based adaptation
method. They apply a mapping on phones to achieve inter-
lingual speaker adaptation between English and Mandarin
Chinese.

4 Cross-Variety adaptation

Based on the state-level transformation method by Wu et
al. [15], we integrated a state mapping mechanism into our
cross-variety adaptation system. Given data from multi-
ple speakers in varieties V1, for which also adaptation data
exist, and V2, to which the voice model should be trans-
formed, we build average voice models [6], denoted as
AV G1 and AV G2 respectively. The corresponding deci-
sion trees will be denoted as DT1 and DT2. Note that
DT1 and DT2 actually consist of multiple trees for mel-
frequency cepstral coefficients, F0, aperiodicity and dura-
tion for each HMM state.

4.1 Mapping function

For every probability density function (pdf) A ∈ AV G1, a
B ∈ AV G2 which minimizes KLD is determined.

M(A) = argmin
B

KLD(A,B) (1)

Equation 1 defines a mapping function M from AV G1 to
AV G2.

Figure 2 shows an illustration of the relation between
decision tree, pdf and KLD-mapping. For example,
“mcep s2 12” refers to the 40-dimensional pdf number 12
for the mel-frequency cepstral coefficients in HMM state 2.
The decision tree questions used in this illustration consist
of two parts. The second part is a phonetic symbol from our
phone set definitions, for example “ks” as the “x”-sound in
“wax”. The first part of the question can be “C” for center,
“L” for left and “R” for right, referring to the position of the
phone in question. Note that this is an artificial example for
conceptual illustration. As previously mentioned, multiple
trees for the feature streams for each HMM state have been
used, resulting in 15 decision trees and 5 additional deci-
sion trees for duration modeling. For example, our exper-
iments for transforming an Austrian German (AT) average
voice to an Innervillgraten (IVG) average voice resulted in
13,808 mappings. This makes vivid visualizations difficult
as this means there are 13,808 leaf nodes in the Austrian
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Figure 2. KLD-Mapping between probability density func-
tions clustered by decision tree.

German decision trees. There are 1,700 different questions
available for this variety.

4.2 Data mapping

In this step, we want to map the probability density func-
tions of the speaker to be adapted from V1 to V2 using the
mapping function M as defined in the previous sections.
This is implemented as described in [15].

The first step is to classify all adaptation data labels
using the decision tree DT1. This yields pdfs for all states
and feature streams for each label. We denote the set of
these pdfs as S1. Next we replace every link from the labels
to every pdf C ∈ S1 with a link to pdf M(C) ∈ AV G2.
See the doted arrows in Figure 2 for an example: the link
to the pdf named “mcep s2 22” from AV G1 will be re-
placed with a link to “mcep s2 1” fromAV G2. Now every
adaptation data label is associated with a number of pdfs in
AV G2, making the model compatible with AV G2.

4.3 Regression tree generation

Wu et al. [15] do not describe the method used to build the
regression tree which is used to generate data clusters for
which transformations will be trained. While the adapta-
tion data are now compatible to AV G2, the decision tree
DT2 is not adequate to handle labels in variety V1, es-
pecially if the phonetic structures of V1 and V2 are very
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Figure 3. Relationship between full-context pdf A and
monophone set of pdfs A′.

different. In the worst case, all labels would be placed in
the same category by this decision tree. This could hap-
pen if the tree consists only of questions not fitting to V1.
For example, if the sets of phones of the two varieties are
completely disjunct, all decision tree questions concerning
phone symbols will yield false. Having all adaptation data
in a single leaf node would on the other hand lead to a sin-
gle, global transformation generated in the adaptation step.

Our solution to this problem is to place the labels
from S1 into the leaf nodes of DT2 not according to their
decision tree questions but to their associated mapped
pdfs. Using Figure 2 as an example, a label from V1 that
would be placed in “mcep s2 22” in DT1 will be part of
the node “mcep s2 11” in decision tree DT2. Again note
that each label has one pdf associated for each available
decision tree, so this process is repeated on multiple trees.

To build the regression tree, we delete leaf nodes from
DT2 and move their associated labels to their parent node
until the number of adaptation labels associated to every
leaf node is above a certain threshold. As these leaf nodes
then form the regression classes, this method assures that
every regression class contains a certain amount of adap-
tation data for the calculation of the transformation. We
modified the regression tree building method of HTS to re-
flect this strategy.

5 Integrating structural information

We also extended the previously described method to add
weight to structural, phonetic information in the mapping
process. Hence the mapping function M (Equation 1) is



replaced by M ′ (Equation 2).

M ′
λ(A) = argmin

B
(λKLD(A,B)+(1−λ)KLDmono(A,B))

(2)
With every pdf A we associate a set of monophone

pdfs A′ with A′
i being the i-th pdf in the set. Given a set of

monophone pdfs A′ for A and B′ for B, we then calculate
KLDmono as in Equation 3.

KLDmono(A,B) =

∑
i

∑
j KLD(A′

i, B
′
j)

(|A′||B′|)
(3)

The relationship between A and A′ is illustrated in
Figure 3. Each pdf A ∈ AV G1 has a number of labels
from the training data of AV G1 associated with it. These
are the labels which would be placed in the node ofAwhen
classified using the decision tree DT1. We retrieve these
labels, extract the center phones (encircled symbols ”ah”
and ”a” in Figure 3) and find their associated monophone
pdfs created during the average voice building.

Figure 3 also illustrates the fact that a single pdf of-
ten covers labels with different center phones. Often, these
center phones are phonetically close. We repeat this pro-
cess for B and then calculate the mean KLD of all combi-
nations of pdfs from A′ with all pdfs from B′. This re-
sults in our monophone KLD function KLDmono(A,B)
which is then linearly interpolated with the regular KLD
KLD(A,B) using an interpolation parameter λ. We then
select the mapping with the lowest value for M ′(A,B).

As calculating the monophone KLD for all possible
combinations ofA andB is computationally expensive, we
first calculate the n best regular KLD values and calculate
the monophone KLD for those combinations only. In our
experiments, we set n = 50.

For the target speaker used in our evaluation, we
trained voice models for λ values from 0.5 to 1.0 in steps
of 0.02. We then selected the model with the highest
likelihood as calculated by the HTS system. See Figure
4 for the search space for the data used in our evaluation.
For the interpretation of the likelihood values used in HTS,
see [18]. Experiments with other adaptation speakers
showed that the behavior of likelihood when varying λ is
unpredictable with many local maxima, making efficient
optimization difficult. But as average voice building and
feature extraction of adaptation data has to be done only
once, sampling the search space in even smaller steps for
λ than 0.02 still seems reasonable.

To see the effect of integrating monophone KLD into
the equation, we compared the resulting mappings for dif-
ferent values of λ with the mappings that result from using
regular KLD only (which is equivalent to using λ = 1.0).
Using our Austrian German and Innervillgraten average
voice models, we generated optimal mappings using M
and M ′

λ for different values for λ. Figure 5 shows the
number of mappings that exist in both result sets plotted
against λ. As expected, the number of matching mappings
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Figure 4. Effect of interpolation parameter λ on model like-
lihood.
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Figure 5. Mappings that match the reference (mapping with
regular KLD) when varying λ.

increases with increasing values of λ. At the peak of model
likelihood at λ = 0.98, only about 100 mappings are dif-
ferent from λ = 1.0. Further research is needed to analyze
the influence of the pdfs involved in these mappings, as
the importance of single pdfs to the final speech can dif-
fer tremendously. Also, pdfs that are rarely used during
the synthesis process could still have an important impact
when they amplify or produce a rare but strongly percepti-
ble error in the output speech.

6 Evaluation

For our evaluation we used our male Austrian German av-
erage voice, our male Innervillgraten average voice and we
used data from an Austrian German speaker to build an In-
nervillgraten voice model using the cross-variety transfor-
mation mechanism described previously. From this model,
we synthesized a test set of 21 utterances that have been ex-
cluded from the training. As a baseline, we used the same
speaker adaptation mechanism without the cross-variety
extensions described previously.



mean median std. deviation
regular cross-variety ∆ regular cross-variety ∆ regular cross-variety

speaker similarity 2.494 2.940 +0.446 2 3 +1 0.929 1.0517
language similarity 2.282 3.270 +0.988 2 3 +1 0.923 1.063
overall quality 2.186 3.212 +1.025 2 3 +1 0.931 0.962

Table 1. Evaluation of sample scores.

We conducted a subjective listening test2 with 5
expert listeners with a speech processing or linguistics
background. Each expert listened to the results for all
21 utterances for both methods. The listeners were not
given any information on the method used to synthesize
each sample. Also, the positions of the samples on the
evaluation interface were swapped randomly for each
utterance. For each utterance, the listeners had to answer
questions for language similarity, speaker similarity and
overall quality. For language similarity, a sample of the
same utterance from a native Innervillgraten speaker was
provided as reference. For speaker similarity, an unrelated
utterance from the original recordings of the adaptation
speaker was provided as reference.

The questions to be answered were:

• Which sample sounds more similar to the reference in
terms of speaker identity?

• Rate the speaker similarity with the reference for each
sample (1 - very different, 5 - very similar).

• Which sample sounds more similar to the reference in
terms of language variety?

• Rate the language variety similarity with the reference
for each sample (1 - very different, 5 - very similar).

• Which sample has the better overall speech quality?

• Rate the quality of each sample (1 - very bad quality,
5 - very good quality).

When the listener would not prefer one sample over
the other, selecting none was allowed.

Table 1 and Figure 6 show the results for the rat-
ing questions. It can be seen that the mean and median
score was higher in all categories for cross-variety adap-
tation compared to regular speaker adaptation. Wilcoxon
rank sum test and Welch two sample t-test both resulted in
p < 0.0001 for both language similarity and overall quality
as well as in p < 0.005 for speaker similarity.

The results for the questions where the listeners had
to choose one sample over the other are shown in Table
2. It can be seen that the listeners were undecided on 25

2Samples: http://userver.ftw.at/∼mtoman/sppra2013/
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Figure 6. Boxplots for listening test scores.

samples when evaluating speaker similarity. This is consis-
tent with the fact that the differences in speaker similarity
scores were much lower than the other categories.

regular cross-variety undecided
speaker similarity 15 65 25
language similarity 19 84 2
overall quality 15 87 3

Table 2. Evaluation of preferred samples.

7 Conclusion

A method for cross-variety transformation based on state
mapping [15] has been presented in this article. We de-
scribed our approach to regression tree generation and the
integration of structural information into the mapping pro-
cess. During the subjective listening test it became evident
that regular speaker adaptation is not sufficient for cross-
variety adaptation. The method presented here greatly im-
proves the quality of the generated voice. Unfortunately
it is still very dependent on good quality average voices.
An average voice biased to a very distinctive speaker will



also introduce noticeable elements of this speaker into the
adapted voice. Also, errors in the synthesized speech of
the average voices will also be noticeable in synthesized
speech of the adapted voice. This is especially relevant
for varieties with few available speech data. While over-
all voice quality and language similarity increased signifi-
cantly, speaker similarity is still an important topic for fur-
ther improvement. To this end, we plan to integrate frame-
level conversion mechanisms to make more efficient use of
the adaptation data. Similarities in the varieties involved
could also be exploited more efficiently by further research
at the level of the regression tree and speaker adaptation
itself.
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