
An Open Source Speech Synthesis Frontend for HTS

Markus Toman and Michael Pucher

FTW Telecommunications Research Center Vienna
Donau-City-Straße 1, A-1220 Vienna, Austria

http://www.ftw.at
{toman,pucher}@ftw.at

Abstract. This paper describes a software framework for HMM-based speech
synthesis that we have developed and released to the public. The framework is
compatible to the well-known HTS toolkit by incorporating hts engine and Flite.
It enables HTS voices to be used as Microsoft Windows system voices and to
be integrated into Android and iOS apps. Non-English languages are supported
through the capability to load Festival format pronunciation dictionaries and let-
ter to sound rules. The release also includes an Austrian German voice model
of a male, professional speaker recorded in studio quality as well as pronuncia-
tion dictionary, letter to sound rules and basic text preprocessing procedures for
Austrian German. The framework is available under an MIT-style license.

Keywords: speech synthesis, HTS, hidden markov model, frontend, software

1 Introduction

Hidden-Markov Model (HMM) based speech synthesis provides a methodology for
flexible speech synthesis while keeping a low memory footprint [1]. It also enables
speaker adaptation from average voice models, allowing the creation of new voice mod-
els from sparse voice data [2], as well as techniques like interpolation [3][4] and trans-
formation [5][6] of voices. A well-known toolkit for creating HMM-based voice mod-
els is HTS [7]. Separate software toolkits are available to actually synthesize speech
waveforms from HTS models. A popular, freely available framework is hts engine [8].
Speech synthesis frontends on the other hand provide means for analyzing and process-
ing text, producing the necessary input for the synthesizer. In HTS this input is a set of
labels where usually each label represents a single phone and contextual information,
including surrounding phones, position in utterance, prosodic information etc. While
not exclusively being frontends and not specifically targeted for HTS, popular choices
are Festival [9] or Flite [10]. Festival is a complex software framework for building
speech synthesis systems focusing Unix-based operating systems. Flite was built as a
lightweight alternative to Festival with low memory footprint and fast runtime in mind.

Our main goal when creating the presented frontend framework was to easily allow
HTS voices to be used with the Speech Application Programming Interface 5 (SAPI5).
This allows the framework to be installed on different versions of the Microsoft Win-
dows operation system as speech synthesis engine, making HTS voice models avail-
able as system voices to applications like screen readers, e-book creators etc. The sec-
ond goal was simple integration of new languages and phone sets. The third goal was



2 Markus Toman and Michael Pucher

portability to mobile devices. The framework is available under an MIT-style license at
http://m-toman.github.io/SALB/.

Flite has been adapted for HTS in the Flite+hts engine software [8] and due to its
small and portable nature it seemed like a good fit to our requirements. The structure of
Flite makes integrating new languages rather cumbersome. 1 Therefore our framework
integrates Flite for text analysis of English while additionally providing a second text
analysis module that can utilize Festival style pronunciation dictionaries and letter to
sound trees. Text preprocessing tasks (e.g. number and date conversion) can be added
to the module in C++. Adding a completely new text processing module is also pos-
sible. The framework includes hts engine for speech waveform synthesis and can be
extended by other synthesizers. The framework also includes a free voice model of a
male, professional speaker for Standard Austrian German.

2 Voice model “Leo”

Category Phones (IPA)
Vowels A A: 6 6: 5 e E e:
(monoph.) i I i: O o o: ø: æ: 5

œ œ: @ u U u: Y y y:
Vowels 6̃: Õ: æ̃: œ̃:
(monoph.)
nasalized
Diphthongs aI

“
6:5

“
A:5

“
6I
“

AU
“

E5
“

E:5
“

I5
“

i5
“

i:5
“

O5
“

O:5
“

o:5
“

OY
“

ø:5
“

œ5
“

U5
“

u:5
“

U:5
“

Y5
“

y:5
“

Plosives (stops) b
˚

d
˚

g
˚

k P p t

Nasal stops m n N
Fricatives ç x f h s S v z Z
Approximants j
Trill r
Lateral approx. l

Table 1. Phone set used for Austrian German voice “Leo”.

With the framework we provide a free voice model of a male, professional speaker
for Standard Austrian German called “Leo”. The model is built from 3,700 utterances
recorded in studio quality using a phonetically balanced corpus. The phone set used in
the voice can be seen in Table 1. A pronunciation dictionary with 14,000 entries, letter
to sound rules and procedures for number conversion are also included.

1 We have published instructions on adding a new language to Flite: http://sourceforge.net/p/at-
flite/wiki/AddingNewLanguage/



An Open Source Speech Synthesis Frontend 3

3 Framework architecture

The general architecture of the SALB framework is shown in Figure 1. Frontend mod-
ules provide means to communicate with the user or other applications through differ-
ent channels. For example the user can directly trigger speech synthesis tasks by the
Command-Line-Interface (CLI), other applications can use the SAPI5 interface to use
the framework in a uniformly manner together with other synthesis engines that imple-
ment SAPI5. The frontend modules use the C++ Application Programming Interface
(API) of the core module manager, which in turn coordinates the backend modules,
performing text processing and the actual speech synthesis task. The C++ API can be
used directly to embed the framework in other applications.

SAPI CLI JNI (Android)

Manager

Text Analysis Synthesis

flite
Internal Text

Analysis
hts_engine

Frontend

API Calls

Engine

Fig. 1. General framework architecture

3.1 Manager module and API

The core of the framework is the manager module which provides a uniform API for
frontend modules or other applications. It provides abstractions for different elements
of the speech synthesis process. This API is provided by the TTSManager class. A
TextFragment is a piece of text in a given language. Each TextFragment has
FragmentProperties associated which control synthesis parameters (e.g. voice,
speaking rate) for this text fragment. Multiple TextFragment objects can form a
Text object. This can be used to synthesize a text consisting of fragments with different
synthesis parameters (e.g. a text read by different voices). A Text or TextFragment



4 Markus Toman and Michael Pucher

object with associated FragmentProperties can be passed to a TTSManager
object which executes the speech synthesis process and returns a TTSResult ob-
ject. This process is depicted in Figure 2. The TTSManager object first selects an
adequate TextAnalyzer object based on the value in FragmentProperties
specifying the text analyzer to use or a value specifying the language of the text. The
TextFragment is then passed to the TextAnalyzer object which returns a se-
ries of Label objects in a container called Labels. A Label represents the ba-
sic unit for synthesis, usually being a single phone with contextual information. The
TTSManager then selects an adequate Synthesizer implementation, again based
on FragmentProperties, and passes the Label to it. The Label class is re-
sponsible for providing the desired format. Currently the only available format is the
HTS label format, which can easily be stored as special character delimited string. The
Synthesizer returns a TTSResult object containing the synthesized waveform as
vector of discrete samples as well as meta information.

TextFragment Labels TTSResultTextAnalyzer Synthesizer

TTSManager

Fig. 2. Data flow in synthesis process

3.2 Frontend interfaces

The following sections describe the frontend interfaces currently included in the frame-
work.

Speech Application Programming Interface (SAPI) The framework provides a fron-
tend implementing the SAPI5. This allows the registration of the framework as speech
synthesis engine on Microsoft Windows platforms, therefore enabling HTS voices to
be registered as system voices. We provide a Microsoft Visual Studio project [11] to
compile a SAPI-enabled dynamic link library for 32-bit and 64-bit systems that can
be registered with the operating system. Subsequently, voices can be added using the
register voice tool that comes with the framework. Lastly a script, that allows to
create installer packages that install or uninstall the engine and associated voice models,
is bundled with the framework.

Command Line Interface The distribution also contains a simple command line tool
which, given all necessary input for the text analysis and synthesis modules, produces
RIFF wav output files from textual input.



An Open Source Speech Synthesis Frontend 5

Android Integration in Android apps is possible through the Java Native Interface
(JNI) and the Android Native Development Kit (NDK) [12]. The framework comes
with Android make files, a JNI wrapper and a Java class for demonstration purposes.

3.3 Text analysis modules

The following sections describe the text analysis modules currently included in the
framework.

Flite For converting English text to a series of labels for synthesis, we integrated Flite.
The class FliteTextAnalyzer (derived from TextAnalyzer) is a wrapper con-
verting input and output data for and from Flite.

Internal text analyzer The distribution also comes with an internal text analysis mod-
ule InternalTextAnalyzer (derived from TextAnalyzer). This module reads
a specific rules file consisting of a pronunciation dictionary and letter to sound rules in
Festival style format. Preprocessing of text (e.g. for numbers and dates) can be added
by extending the Normalizer class which delegates to different implementations
based on the chosen language. We provide a simple Normalizer for Austrian Ger-
man (AustrianGermanNormalizer) as well as a comprehensive rules file which
can be used as an example to integrate new languages. This module uses an utterance
structure which consists of the classes Phrase, Word, Syllable and Phone. The
PhraseIterator class is used to navigate in this structure to build the resulting
Label object.

3.4 Synthesis modules

The following section describes the currently available synthesis module in the frame-
work.

hts engine This module provides a wrapper around hts engine and is implemented by
the class HTSEngineSynthesizer (derived from Synthesizer). The Label
objects provide strings in HTS label format which are the input to hts engine. The
resulting waveform is then converted and encapsulated in a TTSResult object and
returned to the TTSManager and subsequently to the caller. We have changed the
algorithm for changing the speaking rate to linear scaling due to the results in [4].

4 Adding new languages

One main goal when developing the framework was the possibility to easily integrate
voice models of other languages than English. As literature aiding this process is scarce,
we present some basic guidelines in the following sections.



6 Markus Toman and Michael Pucher

4.1 Gathering data

Before creating a recording script, a defined phone set is needed. These already exist
for many languages. If not, the inventory of all relevant phones of a language should
be defined in cooperation with phoneticians. One possibility is to gather conversational
speech data in the target language and then produce manual transcriptions. The granu-
larity of the transcription is very important and has a direct impact on the quality of the
final voice models. For example, diphthongs can be modeled as separate phone sym-
bols or split into two symbols. When a phone set is defined, recording scripts can be
generated either through manual transcription or by using orthographic text (e.g. from
newspapers) and a letter to sound system. The recording script should contain all phones
in as many triphone contexts, better quinphone contexts, as possible. In any case each
phone should occur multiple times (preferably at least 10 times, considering that a set
set will also be split off the training data). Given a data set of phonetically transcribed
sentences, algorithms to solve the set cover problem can be employed to produce a
final recording script. From this data set, a test set can be selected by the same proce-
dure (e.g. select the smallest set that contains each phone at least 2 times). Speakers
should be recorded in studio setting and with neutral prosody. The output of this step
is a phone set, recording scripts and a corpus of recorded utterances in waveforms and
transcriptions.

4.2 Integration

The internal text analyzer reads rules for text processing from an input stream. These
rules consist of a lexicon and a letter to sound tree. A word is first looked up in the
lexicon. If it can not be found there, the letter to sound rules are used to create the pho-
netic transcription. A voice model and the text processing rules are sufficient for bassic
speech synthesis and building SAPI5 voice packages using the framework. Extend-
ing the source code is necessary if more sophisticated text processing is required, the
C++ class AustrianGermanNormalizer can be used as an example for this. The
method InternalTextAnalyzer::TextFragmentToPhrase can be adapted
to implement alternatives to the Festival lexica and letter to sound rules.

Lexicon The lexicon (or pronunciation dictionary) part of the text rules is a set of
mappings from orthography to phonetics. The framework uses Festival style lexica in
Scheme syntax.2 A lexicon can be derived from the data corpus used for the recording
or from publicly available pronunciation dictionaries.

Letter-to-sound rules The internal text analyzer is able to read Festival style letter to
sound rules.3 A method for building letter to sound rules from an existing lexicon can
be found in [13]. For languages with an orthography very close to the phonetics, the
letter to sound rules can also be hand-crafted.

2 Festival lexicon definition: http://www.cstr.ed.ac.uk/projects/festival/manual/festival 13.html
3 Festival LTS rules: http://www.cstr.ed.ac.uk/projects/festival/manual/festival 13.html#SEC43



An Open Source Speech Synthesis Frontend 7

4.3 Training voice models

Voice models to be used with the SALB framework can be trained using the HTS toolkit.
Available demonstration scripts for speaker dependent voices can be adapted for this
purpose. When using the demonstration scripts, it is necessary to replace raw sound
files, labels and question files. Label files can be produced using the SALB framework
once at least a lexicon containing all words from the training set is available. The ques-
tion files contain questions used in the decision tree based clustering [14]. An illustrative
example of the usage of the phone questions in a decision tree can be seen in Figure 3.
A minimal question file should at least contain all phone identity questions (e.g. for a
phone “oh” and quinphone models, at least the following questions should be defined:
“LL-oh”, “L-oh”, “C-oh”, “R-oh”, “RR-oh”). When all parameters (e.g. sampling
rate) have been set, the training process can be started to produce an “htsvoice”
model file that can be used with the SALB framework.

C-t

C-Vowel

L-oh
C-oh

true

true

false

mcep_s2_23 mcep_s2_24

mcep_s2_21 mcep_s2_22 mcep_s2_25

true

true

false

false

false

Fig. 3. Questions in decision tree based clustering

5 Conclusion

We have presented an open source speech synthesis framework, a software that bridges
existing tools for HTS-based synthesis like hts engine and Flite with SAPI5 to enable
HTS voices to be used as Windows system voices. It allows to load and use Festival
style lexica and letter to sound rules for easy integration of new languages. The C++
API allows embedding in other applications as well as Android and iOS apps. Also
included is a voice model of a male, professional Standard Austrian German speaker
with lexicon and letter to sound rules. We have also given a brief tutorial on how to train
voice models for further languages and add use them with the SALB framework.



8 Markus Toman and Michael Pucher

Acknowledgements

This work was supported by the Austrian Science Fund (FWF): P22890-N23. The Com-
petence Center FTW Forschungszentrum Telekommunikation Wien GmbH is funded
within the program COMET - Competence Centers for Excellent Technologies by BMVIT,
BMWA, and the City of Vienna. The COMET program is managed by the FFG.

References

1. Zen, H., Tokuda, K., Black, A.W.: Statistical parametric speech synthesis. Speech Commu-
nication 51(11) (2009) 1039–1064

2. Yamagishi, J., Kobayashi, T.: Average-voice-based speech synthesis using HSMM-based
speaker adaptation and adaptive training. IEICE Transactions on Information and Systems
E90-D(2) (February 2007) 533–543

3. Pucher, M., Schabus, D., Yamagishi, J., Neubarth, F., Strom, V.: Modeling and interpola-
tion of Austrian German and Viennese dialect in HMM-based speech synthesis. Speech
Communication 52(2) (feb 2010) 164–179

4. Valentini-Botinhao, C., Toman, M., Pucher, M., Schabus, D., Yamagishi, J.: Intelligibility
Analysis of Fast Synthesized Speech. In: Proc. Interspeech, Singapore (September 2014)
2922–2926

5. Wu, Y.J., Nankaku, Y., Tokuda, K.: State mapping based method for cross-lingual speaker
adaptation in HMM-based speech synthesis. In: Proceedings of the 10th Annual Confer-
ence of the International Speech Communication Association (INTERSPEECH), Brighton,
United Kingdom (2009) 528–531

6. Toman, M., Pucher, M., Schabus, D.: Cross-variety speaker transformation in HSMM-based
speech synthesis. In: Proceedings of the 8th ISCA Workshop on Speech Synthesis (SSW),
Barcelona, Spain (August 2013) 77–81

7. Zen, H., Nose, T., Yamagishi, J., Sako, S., Masuko, T., Black, A.W., Tokuda, K.: The HMM-
based speech synthesis system (HTS) version 2.0. In: Proceedings of the 6th ISCA Workshop
on Speech Synthesis (SSW), Bonn, Germany (August 2007) 294–299

8. HTS working group: hts-engine. http://hts-engine.sourceforge.net/
9. University of Edinburgh: Festival. http://www.cstr.ed.ac.uk/projects/

festival/
10. Carnegie Mellon University: Flite. http://www.festvox.org/flite/
11. Microsoft Corporation: Visual Studio. https://www.visualstudio.com/
12. Google Inc: Android NDK. https://developer.android.com/tools/sdk/

ndk/
13. Black, A.W., Lenzo, K., Pagel, V.: Issues in building general letter to sound rules. In: The

Third ESCA Workshop in Speech Synthesis. (1998) 77–80
14. Yoshimura, T., Tokuda, K., Masuko, T., Kobayashi, T., Kitamura, T.: Simultaneous mod-

eling of spectrum, pitch and duration in HMM-based speech synthesis. In: Proceedings of
the 6th European Conference on Speech Communication and Technology (EUROSPEECH),
Budapest, Hungary (September 1999) 2374–2350


