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Abstract

In this paper we describe the development of a Hidden Markov
Model (HMM) based synthesis system for operatic singing in
German, which is an extension of the HMM-based synthe-
sis system for popular songs in Japanese and English called
“Sinsy”. The implementation of this system consists of German
text analysis, lexicon and Letter-To-Sound (LTS) conversion,
and syllable duplication, which enables us to convert a Ger-
man MusicXML input into context-dependent labels for acous-
tic modelling.

Using the front-end, we develop two operatic singing
voices, female mezzo-soprano and male bass voices, based on
our new database, which consists of singing data of professional
opera singers based in Vienna. We describe the details of the
database and the recording procedure that is used to acquire
singing data of four opera singers in German.

For HMM training, we adopt a singer (speaker)-dependent
training procedure. For duration modelling we propose a sim-
ple method that hierarchically constrains note durations by the
overall utterance duration and then constrains phone durations
by the synthesised note duration. We evaluate the performance
of the voices with two vibrato modelling methods that have been
proposed in the literature and show that HMM-based vibrato
modelling can improve the overall quality.
Index Terms: singing synthesis, opera singing, vibrato mod-
elling

1. Introduction
By singing synthesis we refer to the task of generating an acous-
tic signal of a singing person. A text input and a musical score
that is aligned with the text thereby control the synthesis out-
put. The textual data is divided into sequences of syllables.
This input data can be given as MusicXML [1] file encoding
a musical score as shown in Figure 1. Several methods for
synthesis of singing have been proposed in the literature, like
articulatory singing synthesis [2], formant based singing syn-
thesis [3], diphone-based singing synthesis [4], or HMM-based
singing synthesis [5, 6, 7, 8]. We will work within the HMM-
based paradigm and extend Sinsy [7] with a German front-end
and acoustic models.

An articulatory singing synthesis system [2] takes gestural
scores, which are fed into models of the vocal tract and the vocal
folds that produce a dynamic feature trajectory. This trajectory
can then be used to control the synthesiser. The gestural score
can either be created by hand or by a rule-based system. One
disadvantage of this kind of synthesiser is the difficulty to obtain
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Figure 1: Musical score of Sarastros 2nd Aria “In diesen heilgen
Hallen” from “Die Zauberflöte” by W. A. Mozart (left). Part of
musical score in MusicXML (right).

enough articulatory data to train models automatically, as can be
done with acoustic recordings.

The rule-based formant synthesis system proposed in [3]
has the advantage that it can be used without any acoustic train-
ing data. The system takes text data and musical score as input
and generates 28 parameters at 100 Hertz. These parameters are
then used to control the formant synthesiser.

Waveform concatenation methods [4] have also been ap-
plied for singing synthesis. At recording time all possible com-
binations of consonant-vowel, vowel-consonant, vowel-vowel
have to be recorded. This technology was developed by Yamaha
and is licensed to other companies that sell commercial versions
of singing synthesisers. In synthesis the pitch of the selected
units has to be changed to the desired pitch and the timbre has
to be smoothed at concatenation points. All this is done in the
frequency domain. For changing the pitch the power spectrum
is divided into different regions, which are then scaled to the
desired pitch.

The method used in this paper is acoustic singing synthesis
within the HMM framework [5, 6, 7, 8]. The main advantages
of this method are that it is data-driven, flexible, and can use
many techniques developed for HMM-based speech synthesis.
HMM-based singing synthesis uses the maximum likelihood
parameter generation algorithm [9] to generate the necessary
parameters for singing. The context clustering is extended to
take features derived from the musical score into account (cur-
rent, previous, following notes, duration, etc.).

In such a corpus-based approach machine learning meth-
ods are used to learn a singing model from pre-recorded singing
data. A general problem for corpus-based approaches to singing
synthesis is the prediction of lyrics, phrases and expressions that
are not covered in the training data. Operatic singing styles pose
additional modelling problems due to the dynamic and largely
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Figure 2: Classification of opera songs according to lyrical - dramatic
and slow - fast dimension.

varying F0 and power trajectories, which would require very
precise temporal modelling techniques. The mezzo-soprano
and soprano may use very high F0 values, which also poses
a challenge for spectral and excitation analysis and extraction
[10]. A further challenge is the modelling of duration that can
vary significantly between and within different opera pieces.

This paper describes our first attempts to develop a HMM
based synthesis systems for such challenging operatic singing.
The first steps which we report in this paper include the creation
of a new opera singing database in Section 2, the development
of a German front-end in Section 3, training of two operatic
singing voices, female mezzo-soprano and male bass voices,
using HMMs estimated on the new database in Section 4, and
vibrato modelling and evaluation in Section 5.

2. Singer and song selection
For the recording of opera singers, we have consulted a pro-
fessional opera-singing teacher who performed the selection of
songs and singers. Differently to speech recordings the selec-
tion of songs and singers is tightly coupled. In standard speech
synthesis we would select a corpus with an optimal phone cov-
erage by finding an approximate solution for the associated min-
imum set-cover problem [11]. For the solution of this prob-
lem we can take different features like diphones, diphones in
stressed syllables and so on into account [12]. For finding this
corpus we need a large phonetically transcribed background
corpus. A speaker that is selected in a separate selection pro-
cess would then read this corpus.

For selecting opera songs, we could go the same way, pro-
vided that we have a large amount of opera songs in MusicXML
format. However, with such a selection process we would end
up with a selection of opera songs that no opera singer has avail-
able in his/her repertoire at the moment. This would possibly
result in lower quality recordings. So the selection of singers
and songs has to go hand in hand by using a different strategy.

Therefore we have decided to select a number of opera
songs (≈ 8-10) for each singer category that are in the reper-
toire of that singer at the moment and that cover the space of
opera songs along the lyrical - dramatic and slow - fast axes.
We also checked that these songs cover the F0 ranges of that
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Figure 3: F0 range for mezzo and opera songs shown on the piano roll.

singer category.
Figure 2 shows the subjective classification of opera songs

along the two dimensions lyrical - dramatic and slow - fast. The
classification of opera songs was subjectively done by a profes-
sional opera-singing teacher. As can be seen in Figure 2 the
opera songs that were then recorded cover the whole space for
mezzo and bass but the slow and dramatic category is in gen-
eral difficult to find and especially difficult for the soprano and
tenor (although the opera teacher did his best consideration). A
further restriction in the selection of songs was the fact that we
were only looking for songs in the German language.

Figure 3 shows the general F0 range of the mezzo singer
with bold numbers on the piano roll ranging from A3 with 220
Hz to A5 with 880 Hz. The coloured bars show the F0 ranges
for our 8 selected opera songs. Song 1 for example has a range
from B3 (=246 Hz) to G5 (=783 Hz). We can see from Figure 3
that our songs cover the F0 range almost completely with the
exception of one note, the highest note with 880 Hz, which is
not existent in the training data.

3. German front-end for Sinsy
The main extensions to the Sinsy system for German were the

• analysis of German input text (text analysis),

• conversion of input words into phonetic sequences (lexi-
con and letter-to-sound conversion), and

• duplication of syllables where syllables had more than
one note (syllable duplication).

3.1. Text analysis

In parsing the data from the MusicXML file the task of text
analysis consists in the reconstruction of words that can then
be used to access the lexicon. The <begin>, <middle>, and
<end> tag inside the MusicXML<lyric> tag are used to mark
the specific syllables of the word. The <single> tag marks a
word with just one syllable.

3.2. Lexicon and letter-to-sound conversion

Words are collected from the MusicXML files and the phonetic
transcription and syllable boundaries are taken from the lexicon
if possible. If the word is not found in the lexicon LTS rules are
used directly on the syllables to avoid the need for syllabifica-
tion.

We integrate a lexicon and rules for LTS conversion from
an open-source synthetic voice for Austrian German [13]. The
LTS rules consist of a set of decision trees, one tree for each
letter, that are used to convert a given input character sequence
(word, syllable) into the corresponding output phones.



Figure 4: Alignment of musical score and phone labels on ut-
terance level for the utterance “Wenn mein Schatz Hochzeit
macht” from G. Mahler’s “Lieder eines fahrenden Gesellen”
from the mezzo-soprano voice.

If a word is not found in the lexicon, syllables from the
MusicXML files are used directly for LTS conversion. For each
syllable we are using the decision trees for predicting the cor-
responding phone sequence. Another approach would be to put
syllables together into words, apply LTS conversion to words
and split the resulting phone sequence again into syllables. By
skipping the last syllabification step, where a sequence of letters
is broken up into syllables we achieve a more robust predic-
tion. Furthermore there are sometimes MusicXML files where
the word level annotation is wrong, such that merging sylla-
bles into words leads to wrong or non-existing words. By start-
ing directly from syllables, we can also alleviate this problem.
Through the integration of LTS rules into the system we are able
to synthesise from any German MusicXML file.

3.3. Syllable duplication

Syllable duplication was not implemented in the open-source
Sinsy system, so we had to do this for German. We followed the
method proposed in [14]. Figure 4 shows an example alignment
for the sentence “Wenn mein Schatz Hochzeit macht”, phoneti-
cally “v E n . m aI n . S a t z . h oh ch t s aI t . m a ch t” where
’.’ signifies word boundaries. The alignment also contains the
silence symbol “sil” at the beginning and end of the utterance.

At the top we can see the spectrogram of the respective au-
dio signal as well as the F0/pitch curve in Hz. Below we have
the phonetic transcription aligned and the musical notes aligned.
We see that the notes start with A4, which has 440 Hz. The F0
curve shows that this target is reached with vibrato around 440
Hz.

The transcription shown here is already after text analy-
sis and letter-to-sound conversion. We can see that the word
“wenn” (“v E n”) is distributed across two notes A4 and G4
such that the syllable duplication turns it into “v E E n” phonet-
ically. The word “mein” (“m aI n”) is also distributed across two
notes F4 and G4. Through syllable duplication it is turned into
“m ah aI n” where we take into account that we do not duplicate
diphthongs like “aI”.

For the duplication of syllables with diphthongs we use
simple duplication rules. When duplicating an “aI” n times for
example, we generate n−1 times an “ah” (a long “a”) followed
by one “aI”. Prefix and postfix are used from the original sylla-
ble. Our notation is closely related to the SAMPA standard [15].

Algorithm 1 shows the algorithm for syllable duplication.
After pre-processing we have inserted pause symbols “pau” at
the phones inside of slurs. For the example of the word “mein”

Algorithm 1 Algorithm for duplicating syllables.
check that slur does not span across words
for note← slur begin, slur end do

for syl← syl begin, syl end do
for phone← phone begin, phone end do

if phone is the first vowel found then
replace phone if it is a diphthong

else
if phone is a pause after vowel was found then

if not at the last pause in the slur then
replace pause by respective phone

else
replace pause by diphthong or phone

end if
end if

end if
if last note and last syllable in slur then

add remaining phones
end if

end for
end for

end for

mentioned above the sequence after pre-processing is “m aI pau
n”. The algorithm now goes through all syllables and phones
within a slur (slur begin to slur end). The first vowel is replaced
if it is a diphthong, so the sequence is “m ah pau n” after this
step. If we are at the last pause in the slur, which we can check
be checking if we are at the last note, we replace the pause by
the respective diphthong. This leaves us with the final sequence
“m ah aI n”, which is the desired result.

At the beginning the algorithm also checks if the slur does
not span across words. In this case we cannot do syllable du-
plication with our algorithm. The algorithm does of course also
work if there are more than two notes that are to be distributed
across a syllable. If we have to sing “m aI n” with four different
notes, the conversion would be from “m aI pau pau pau n” to
“m ah ah ah aI n”.

4. Mezzo-soprano and bass voice building
4.1. Corpora

The recording of the corpora was performed in a professional
recording studio where the opera singer and the piano accom-
paniment player were recorded in two separate studios such that
the singer was able to see the piano player. Since this is an un-
common recording setting for opera singers we had to perform
some test recordings at the beginning.

For training the mezzo voices we had 8 different opera
songs. After splitting the recordings into utterances we had 154
different utterances. 8 utterances were taken as test sentences
and were not used for training. For the bass voice we had also 8
different songs, which were split into 358 utterances, with 8 test
utterances. As shown in Table 1 we had songs from five differ-
ent composers for the mezzo voice with a total duration of 25.8
minutes. For the bass voice we had 28.9 minutes, from three
different composers as shown in Table 2. We have also corpora
for a tenor (male) and a soprano (female) voice, which were
however not used for the acoustic modelling experiments since
we focused on the “simpler” singer categories at the beginning.



Table 1: Songs recorded for the mezzo voice. The table also shows the
maximum and minimum F0 according to the MusicXML file.

Composer Singer Dur. min(F0) max(F0)
G.Mahler Mez 214 246 783
G.Mahler Mez 235 220 783
G.Mahler Mez 201 246 783
G.Mahler Mez 318 220 783
Mozart Mez 170 261 698

Korngold Mez 142 220 698
Humperd. Mez 140 261 879
A.Mahler Mez 128 246 698

25.8 m.

4.2. Acoustic modelling

For training acoustic models for opera singing we adapted an
existing training script for Japanese acoustic model training [16]
that was released in December 2015. The model training fol-
lows the speaker dependent singing synthesis system using
STRAIGHT [17] for feature extraction and synthesis. [18] anal-
ysed the analysis/re-synthesis quality of different parametric
representations for singing speech, where STRAIGHT achieved
a good performance. It would also be interesting to evalu-
ate statistical parametric opera singing synthesis with different
vocoders, which is however out of the scope of this paper.

To adapt the training script for German we had to gener-
ate clustering questions for German. Using the clustering ques-
tions from a speech synthesis training script for German [13]
and adopting it to the Japanese singing training script we gener-
ated a training script. As a language dependent feature we also
added lexical stress, which is not part of the Japanese training
script.

Using the minimum F0 value from the MusicXML file pro-
duced severe F0 extraction problems with the RAPT [19] and
the STRAIGHT F0 estimation algorithms. Therefore the min-
imum F0 value was set to 50 for the mezzo voice and the bass
voice. The maximum F0 was extracted from the MusicXML
utterance files with adding 30 semitones. Adding semitones to
the extracted maximum F0 was necessary to optimise the F0
extraction.

We hypothesised that an increased frequency warping value
compared to 0.55 for Mel-cepstral features would improve
acoustic modelling for the bass by better representation of lower
frequencies, while a lower or negative value would improve fre-
quency representation for the mezzo voice. We could verify this
by an informal listening test for the bass (fw = 0.7), but could
not verify it for the mezzo, where the Mel-cepstrum was used
(fw = 0.55).

In the future we plan to investigate adaptive frequency
warping methods for feature extraction. In [20] for example a
spectral model is used that emphasises the peak of the spectral
envelope at the so called “singing formant”, which was shown
by [21] to lie near 3 kHz.

For generating durations for synthesis we used the overall
original duration from the recorded utterance dorig and the note
durations di from the utterance MusicXML file. Final note du-
rations d̂i where computed as

d̂i = di
dorig∑
di

(1)

by scaling the MusicXML note duration to the original utter-
ance duration.

Table 2: Songs recorded for the bass voice. The table also shows the
maximum and minimum F0 according to the MusicXML file.

Composer Singer Dur. min(F0) max(F0)
Mozart Bass 146 87 261
Mozart Bass 275 87 349

Lortzing Bass 343 123 329
Mozart Bass 223 73 329
Mozart Bass 133 130 261
Mozart Bass 226 87 261
Mozart Bass 211 97 329

Beethoven Bass 174 123 293
28.9 m.

Phone durations pi,j for phone j in note i were generated
from HMM decision trees and the final phone duration p̂i,j was
computed by scaling with the final note duration d̂i.

p̂i,j = pi,j
d̂i∑
j pi,j

. (2)

With this duration modelling method we can control the
overall duration externally while still having a full synthesis
of note and phone durations, which takes information from the
MusicXML score and the HMM decision tree into account.

5. Vibrato modelling
After synthesising the F0 trajectory from the HMM model, we
first apply median filtering to cope with F0 errors and then apply
a vibrato model. In the following subsections, we explain and
compare two methods for modelling of vibrato.

5.1. Global OVP modelling

Like in [20] we modelled overshoot, vibrato, and preparation
(OVP) by a second order system

H(s) =
k

s2 + 2ζωs+ ω2
(3)

with 0 < |ζ| < 1 for overshoot and preparation and |ζ = 0| for
vibrato. The 8 global parameters were estimated from the full
training data sequence by using MATLAB’s non-linear least-
squares solver. In [20] they used a non-linear least-squared-
error method to minimise errors between the generated F0 con-
tours and the actual ones. We were estimating the OVP param-
eters that minimise the distance between original F0 curves and
synthesised and OVP filtered F0 curves on the training data.

argmin
OVP

(F0orig − F0syn(OVP))2. (4)

To generate the synthesised F0syn trajectories for the train-
ing data we did a forced alignment of the data using HSMMA-
lign. Then we converted the monophone labels to full context
ones and used the full context labels to generate F0 parameters
using HMGenS [22], which where then OVP filtered.

The 8 parameters were constrained to the interval [0, 1]. In
synthesis we then applied the OVP filter after generating F0
curves from HMMs and median filtering to add the OVP struc-
ture. For the bass we estimated the following parameter set:
ω = 0.0654 ∗ 2π, ζ = 0.6046, k = 0.0053 for overshoot, ω =
0.0346∗2π, k = 0.0011 for vibrato, and ω = 0.0306∗2π, ζ =
0.9023, k = 0.0289 for preparation. For the mezzo voice the
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Figure 5: HMM-based vibrato modelling.
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Figure 6: Amplitude (left) and frequency (right) distribution of
estimated vibrato parameters for bass and mezzo voice.

values were ω = 0.0382 ∗ 2π, ζ = 0.1919, k = 0.0144 for
overshoot, ω = 0.0345 ∗ 2π, k = 0.0002 for vibrato, and
ω = 0.0367 ∗ 2π, ζ = 1.0, k = 0.0385 for preparation.

The advantage of this method is that we can estimate the
OVP parameters fully automatic. A disadvantage is the aver-
aging that is underestimating the vibrato at places where it is
strong in the signal. Another possibility would be to estimate
the parameters only for vibrato segments, which would how-
ever overestimate vibrato for the other segments and also lead
to a less realistic modelling. Furthermore we would also need
to detect vibrato first.

5.2. HMM vibrato modelling

The second method was to model vibrato as a time dependent
periodic fluctuations of F0

v(ma(t),mf (t), i) = ma(t) sin(2πmf (t)fs(t− t0)) (5)

with ma(t) F0 amplitude in Cent, mf (t) F0 frequency in Hz,
and fs frame shift like it was proposed in [6].

The observation probability of the multi-stream HMM is
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Figure 7: Evaluation results.

extended to

b(ot) = p(o
(spec)
t )γspecp(o

(bap)
t )γbapp(o

(F0)
t )γF0p(o

(vib)
t )γvib .

(6)
by adding an additional stream for the vibrato model.

We optimised the frequency, phase, and amplitude parame-
ter for sequences of 30 frames and used them to train a stream
with frequency and amplitude parameters. The optimisation
goal with the non-linear least-squares solver was again to min-
imise the distance between original F0 and synthesised F0 with
the added frequency and amplitude varying sinusoids on the
training data.

At synthesis time we created an amplitude and frequency
varying sinusoid from the generated parameters like shown in
Figure 5 (top), which was simply added to the generated F0 se-
quence (3rd from top). Figure 5 shows the frequency varying
sinusoid, the F0 curve generated by the HMM, the HMM curve
with the added amplitude and frequency varying sinusoid, and
the original F0 curve. The difference between original and syn-
thesised curve comes from additional pauses at beginning and
end in the synthesised version.

Figure 6 shows the distribution for estimated frequency and
amplitude parameters for the bass and the mezzo voice. Here we
use a kernel density estimation with a normal kernel. Figure 6
left shows that the amplitude is almost identically distributed
for bass and mezzo voice around 5. Figure 6 right shows that
there is a difference in the frequency distribution between bass
and mezzo with the mezzo having a higher probability of vi-
brato frequencies around 20 Hz and the bass having a higher
probability of vibrato frequencies around 7 Hz. The distribu-
tion depends of course on our assumption to model vibrato as
an amplitude and frequency varying sinusoid.

5.3. Evaluation

For the evaluation we have used several mezzo and bass
voices (mez orig, mez baseline, mez ovp, mez vib; bas orig,
bas baseline, bas ovp, bas vib). Here * orig are the original
recordings, * baseline is the voice with syllable duplication etc.
but without any vibrato model, * ovp uses the OVP based vi-
brato model with 8 global parameters, and * vib uses the HMM-
based vibrato model1.

1Samples can be found on http://speech.kfs.oeaw.ac.
at/operassw16.



We had 8 different listeners that had to perform a pair-wise
comparison where they had to decide which voice is better.
They were allowed to listen to the samples as often as they liked.
All listeners were neither professional opera singers nor musi-
cians. The task was to evaluate the overall quality of the singing
voice.

Figure 7 shows the results for the evaluation of the mezzo
(left) and the bass (right) voice. Since the original recordings
always win over the synthesised ones we did not include these
comparisons in the graph. This also shows that there is still a
big room for improvement over the synthesised models.

In Figure 7 it can be seen that the HMM vibrato model wins
over the baseline and the OVP model for the mezzo and the bass
voice. We also see that the HMM-based vibrato model can im-
prove over the global overshoot-vibrato-preparation model for
both voices. The advantage of the HMM-based vibrato model
lies in the context dependent estimation of singing vibrato.

6. Conclusion
We have described the development and evaluation of a Hid-
den Markov Model (HMM) based synthesis system for operatic
singing in German. We have also discussed our procedure for
singer and song selection and have described German front-end
modules implemented for the Sinsy system including text anal-
ysis, LTS conversion, and syllable duplication.

Using this front-end, we have developed two operatic
singing voices, female mezzo-soprano and male bass voices,
based on a new database, which consists of singing data of pro-
fessional opera singers based in Vienna. We described the de-
tails of the database and the recording procedure that was used
to acquire singing data of four opera singers in German.

In acoustic modelling we have investigated two methods for
vibrato modelling in opera singing synthesis. We show that the
HMM-based vibrato modelling can improve the overall quality
for the mezzo-soprano and the bass voice. We also saw that
the HMM-based vibrato model could improve over the global
overshoot-vibrato-preparation model where one global parame-
ter set for the whole voice is estimated. For duration modelling
we have proposed a method that hierarchically constrains note
durations by the overall utterance duration, and constrains the
phone durations by the synthesised note duration.

Although we need much further improvement before we
can synthesise realistic opera singing, we showed how incre-
mental improvements can be made in acoustic modelling for
opera singing synthesis using a limited amount of training data.
For further improvement we need to use more training data
and incorporate more specific knowledge about operatic singing
style into our models.
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