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Kurzfassung

In dieser Diplomarbeit wird ein Hidden-Markov-Modell (HMM) basiertes Opernge-
sangssynthesesystem für Deutsch entwickelt, das auf einem japanischen Gesangssyn-
thesesystem für Popsongs basiert. Die Entwicklung besteht aus der Integration einer
deutschen Textanalyse, eines Lexikons mit Graphem-zu-Phonem Übersetzung, und
eines Silbenvervielfältigungsalgorithmus. Außerdem werden synthetische Opernstim-
men der vier wichtigsten Sängerkategorien Mezzo, Sopran, Tenor, und Bass entwickelt
und die Methode mit der der Korpus erstellt wurde wird beschrieben. Darüber hinaus
wird eine Methode entwickelt um die vorhandenen Daten (Waveforms und MusicXML
Dateien) in ein für das Training der Modelle geeignetes Format umzuwandeln. Für
das Training wird eine SängerInnenabhängige Methode für das Deutsche adaptiert.
In einer objektiven und subjektiven Evaluation werden verschiedene Parameterkon-
figurationen für das Training und die Synthese evaluiert. Mit der subjektiven Eval-
uation wird gezeigt dass Operngesangssynthese von moderater Qualität mit diesem
System und den begrenzten vorhandenen Trainingsdaten möglich ist, und dass die
Dauermodellierung der wichtigste Qualitätsparameter der Modelle ist. Für ein Syn-
thesesystem von hoher Qualität sind mehr Trainingsdaten notwendig, da bekannt ist
das die verwendeten Lernalgorithmen bessere Ergebnisse mit mehr Daten liefern. Das
derzeitige System bildet die Basis für so ein zukünftiges System und kann auch für ein
allgemeines Gesangssynthesesystem verwendet werden. Vor dieser Arbeit war ein de-
rartiges Gesangssynthesesystem basierend auf HMMs nur für Japanisch und Englisch
verfügbar.
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Abstract

In this thesis we develop a Hidden Markov Model (HMM) based opera singing synthesis
system for German that is based on a Japanese singing synthesis system for popular
songs. The implementation of this system consists of an integration of German text
analysis, lexicon and Letter To Sound (LTS) conversion, and syllable duplication. We
also develop opera singing voices for the main four singer categories mezzo, soprano,
tenor, and bass and describe the recording method that was used to record opera
singers to acquire the data that is used for modeling. These voices can be used for
opera singing synthesis and automatic alignment of singing. Furthermore we develop
an alignment method that is used to transform the available data (waveforms, Music
Extended Markup Language (MusicXML) files) into a format suitable for training
the voices. For the training itself we adapt a singer-dependent training procedure to
German. Finally we present an objective and subjective evaluation of the mezzo voice
where effects of different parameter configurations during training and synthesis are
evaluated. With the subjective evaluation we can show that moderate quality opera
singing synthesis is feasible with the limited amount of training data at hand and that
correct duration modeling is the most influential quality parameter at this stage. For
a high quality opera singing synthesis system we would need more training data as it
is known that the quality of the models increases with larger amounts of data. The
current system provides the basis for such a future high quality system, and can also
be used as a front-end for a general German singing synthesis system. Before our
work such an HMM-based singing synthesis system was only available for Japanese
and English.
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1 Introduction

By singing synthesis we refer to the task of generating an acoustic signal of a singing
person. The synthesis output is thereby controlled by a text input and a musical score
that is aligned with the text. The textual data is also divided into syllabic sequences.
This input data can be given as Music Extended Markup Language (MusicXML) [1]
file.

In a corpus-based approach machine learning methods are used to learn a singing
model from pre-recorded singing data. A general problem for corpus-based approaches
to singing synthesis is the modeling of contexts that are not covered in the training
data. An additional problem is the alignment of singing speech and Fundamental
Frequency (F0) that has to be done in a natural way that does not exactly follow the
musical notation.

Opera singing synthesis poses additional modeling problems due to the large varia-
tion in F0. A further challenge is the modeling of duration that can vary significantly
between and within different opera pieces.

One main result of this thesis will be acoustic models for Hidden Markov Model
(HMM)-based opera singing synthesis. All modeling will be based on a German opera
singing corpus that was recorded within the Acoustic Modeling and Transformation
of Language Varieties (AMTV) [2] research project. This corpus contains recordings
of several opera pieces for each voice type (mezzo, soprano, bass, and tenor) as well
as a phonetically balanced corpus of opera singing. For this thesis we will build voices
for all corpora and evaluate different models of the mezzo corpus. For the acoustic
models we will only use the recorded opera songs, since no MusicXML transcription
is available for the phonetically balanced corpus.

The acoustic models will be integrated into an existing open-source singing synthesis
system [3], which currently only supports Japanese. The singing synthesis system will
get a musical score and German text as input in the form of a MusicXML file and
produce an acoustic opera performance as output. The system is based on the HMM-
based Speech Synthesis System (H Triple-S) (HTS) [4].

The main results of this thesis are:

• Extension of an existing HMM-based singing synthesis system [3] with a module
for German.

• Automatic alignment of singing speech and music for an existing opera singing
corpus.

• Acoustic model training for opera singing synthesis.

1



1 Introduction

• Objective and subjective evaluation of opera singing synthesis.

This system will allow users to synthesize any type of German singing speech (includ-
ing operas) with state-of-the-art HMM-based synthesis techniques. With this system
we will also have the framework and development pipeline that allows us to quickly
create new German singing synthesis voices from given recordings.

For this thesis we will use statistical modeling methods for parametric speech syn-
thesis based on HMMs. For acoustic model training HMM states are clustered with
decision trees where separate trees are estimated for F0, spectrum, and duration. The
clustered models are optimized according to the Maximum Likelihood (ML) criterion.
The questions used in the clustering cover wide contexts such as current, previous and
following phones, notes for current, previous, and following phones, and syllable and
word contexts. Appropriate clustering questions for German will be designed, that
contain German phones, syllable stress, and word information that is not required for
Japanese.

For the evaluation of the developed methods we will use standard objective eval-
uation metrics. In the evaluation we will measure the spectral distortion between
original opera singing performances and synthesized performances using MCD as met-
ric. For spectral distortion the original opera singing performances and synthesized
performances are aligned, and then the spectral difference between the aligned frames
is measured. Spectral distortion will be used to evaluate different F0 extraction meth-
ods for training. It will show the influence of F0 extraction on the overall synthesis
quality, as well as the spectral difference between synthesized and original samples.
We will select a set of 8 test sentences per singer that are not used for training that
will be used in the evaluation.

Additionally to the objective evaluation we will also perform a subjective evalua-
tion of synthesis methods were listeners have to make preference ratings for synthesis
samples that are generated using different methods. Subjective evaluation methods
are state-of-the-art in the evaluation of speech synthesis systems, since they allow to
find quality differences that are not found by objective metrics [5].

The thesis is structured as follows: In Chapter 2 we will introduce the state-of-
the-art technologies that are necessary for an HMM-based singing synthesis system.
Therefor we will introduce HMMs in general in Section 2.1, followed by an introduc-
tion of speech synthesis in general (Section 2.2), and HMM-based speech synthesis in
particular (Section 2.3). After explaining the MusicXML format in Section 2.4 we will
introduce singing synthesis in general (Section 2.5) and HMM-based singing synthesis
in particular (Section 2.6). Finally we will introduce the MIDI format in Section 2.7
and describe how we align MIDI sequences and audio data (Section 2.8).

In Chapter 3 we will explain the process of developing the German opera synthesizer
and voices. In Section 3.1 we describe the recording and corpora development pro-
cess. Section 3.2 shows how we extended the existing HMM-based singing synthesis

2



system [3] with a module for German. Section 3.3 describes the alignment process in
detail. Finally we describe the acoustic model training in Section 3.4 and show the
whole development pipeline in Section 3.5.

Chapter 4 presents the objective and subjective evaluation results for the different
mezzo voices. In Section 4.1 we describe the parameters that are used for defining
different voices. Section 4.2 defines the objective evaluation metric that is used for ob-
jective evaluation in Section 4.3. Section 4.4 defines the subjective evaluation method
that is used for subjective evaluation in Section 4.5. In Section 4.6 we analyze the
evaluation results. Chapter 5 concludes the thesis.
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2 State-of-the-art

2.1 Hidden Markov Model (HMM)

Hidden Markov Model (HMM)s are well known models for modeling of time-series and
are used in speech recognition since many years [6, 7]. More recently HMMs are also
used in speech synthesis [8, 9]. We will introduce Discrete Density Hidden Markov
Models (DDHMM) and Continuous Density Hidden Markov Models (CDHMM).

2.1.1 Discrete Density Hidden Markov Models (DDHMM)

An DDHMM λ is defined by two matrices of transition probabilities A and obser-
vation probabilities B (λ = (A,B)), which are defined over a finite set of states
S = {s1, .., sN} (start state s1, end state sN ) and a finite set of observations O =
{o1, .., oM}.

An example where the states denote the temperature of some liquid, and the obser-
vations the color of the liquid with 5 states and 4 possible observations: N = 5,
S = {s1, s2, s3, s4, s5} = {s1, cold,warm,hot, s5}, M = 4, O = {o1, o2, o3, o4} =
{blue, lightblue, violet, red}

AN×N = A5×5 =


0 a1,2 a1,3 a1,4 0
0 a2,2 a2,3 a2,4 a2,5

0 a3,2 a3,3 a3,4 a3,5

0 a4,2 a4,3 a4,4 a4,5

0 0 0 0 0

 (2.1)

B(N−2)×M = B3×4 =

b2,1 b2,2 b2,3 b2,4
b3,1 b3,2 b3,3 b3,4
b4,1 b4,2 b4,3 b4,4

 (2.2)

Equation 2.1 shows the transition matrix for this example, where 0 means that there
is no transition from state i to state j. Equation 2.2 shows the observation matrix for
the respective example, where each row contains the observation probabilities for a
state with observation. We cannot make observations in s1 and s5, the start and end

5
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s1 s5s2s2 s3s s4s
cold warm hot

P( blue | s2) = b2,1 P( blue | s3) = b3,1 P( blue | s4) = b4,1

P( lightblue | s2) = b2,2 P( lightblue | s3) = b3,2 P( lightblue | s4) = b4,2

P( violet | s2) = b2,3 P( violet | s3) = b3,3 P( violet | s4) = b4,3

P( red | s2) = b2,4 P( red | s3) = b3,4 P( red | s4) = b4,4

a1,2

a2,2
a3,3 a4,4

a2,3 a3,4 a4,5

a4,3a3,2

a2,5 a3,5

a1,4a1,3

Figure 2.1: Discrete Density Hidden Markov Models (DDHMM).

state.

A =


0 a1,2 a1,3 a1,4 0
0 a2,2 a2,3 0 a2,5

0 a3,2 a3,3 a3,4 a3,5

0 0 a4,3 a4,4 a4,5

0 0 0 0 0

 (2.3)

Equation 2.3 shows a modified transition matrix for the above example where there
is no possibility to go directly from s2 (cold) to s4 (hot) or vice versa. The DDHMM
can also be represented in a state machine format as shown in Figure 2.1.

With this DDHMM we can compute the probability of observation sequences (P (OT
1 ))

like ”blue, red, lightblue, red” or ”red, red, red, red”. Or we can compute the prob-
ability of an observation sequence given a state sequence (P (OT

1 |ST1 )). This can be
interpreted as the probability that the state sequence generated the observation se-
quence.

Concerning the probability of state sequences the state at time t is only dependent
on the state at time t− 1 (Markov property):

P (St|St−1, St−2, ...) = P (St|St−1) (2.4)

The set of state transition probabilities (probability to go from state i to state j) is
given by the matrix A where

aij = P (St = sj |St−1 = si), 1 ≤ i, j ≤ N (2.5)

aij ≥ 0,

N∑
j=1

ai,j = 1 (2.6)
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2.1 Hidden Markov Model (HMM)

However, the state sequence is not directly observable (it is hidden). What we
observe is a sequence of T observations oT1 = o1, ..., oT .

In the case of a finite alphabet with M discrete observation symbols o1, ..., oM the
observation probabilities of being in state j while observing symbol k are given by the
matrix B with

bj,k = bj(k) = P (ok|sj) = P (Ot = ok|St = sj), 1 ≤ k ≤M (2.7)

bj(k) ≥ 0, 2 ≤ j ≤ N − 1, 1 ≤ k ≤M (2.8)

M∑
k=1

bj(k) = 1, 2 ≤ j ≤ N − 1 (2.9)

2.1.2 Continuous Density Hidden Markov Models (CDHMM)

For modeling the time series data in a speech synthesis system with HMMs we need to
model a continuous parameter space. For this modeling Continuous Density Hidden
Markov Models (CDHMM) are used.

In CDHMM [10, 7] we will most times use the normal (=Gaussian) distribution
defined by (mean µ, variance σ2, standard deviation σ)

p(x) = N (x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2 (2.10)

The Maximum Likelihood (ML) estimates µ̂, σ̂2 of µ and σ2 are given by

µ̂ =
1

N

N∑
k=1

xk σ̂2 =
1

N

N∑
k=1

(xk − µ̂)2 (2.11)

In many applications (speech synthesis and recognition, gesture recognition) we have
an (uncountably) infinite number of possible observations. In CDHMMs the observa-
tion probability can be using a normal (=Gaussian) probability density function. For
one variable: bj(ok) = N (ok;µj , σ

2
j ). For multiple variables: bj(ok) = N (ok;µj ,Σj)

µ = 0, σ2 = 0.49; µ =

[
0

0.5

]
,Σ =

[
0.7 0
0 1.2

]
,

[
0.7 0.5
0.5 1.2

]
,

[
0.7 −0.5
−0.5 1.2

]
(2.12)

The CDHMM is defined over a finite set of states S = {s1, .., sN} (start state s1,
end state sN ) and an infinite set of observations O = {ok ∈ R} ∨ O = {ok ∈ Rn}.
A CDHMM λ is defined by a matrix of transition probabilities A and observation
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Figure 2.2: Normal distribution.

probabilities that are defined by N mean values µj (or N mean vectors µj) and N
variances σ2

j (or co-variance matrices Σj)

λ = (A, (µ1, .., µN ), (σ2
1, .., σ

2
N ) ∨ (2.13)

λ = (A, (µ1, ..,µN ), (Σ1, ..,ΣN )). (2.14)

Example shown in Figure 2.3 (the states denote the phonemes within a word, and
the observations are the Mel-cepstral frequencies of the phonemes):

• N = 6, S = {s1, s2, s3, s4, s5, s6} = {s1, v, I, l, y:, s6}

• HMM for the word ”will” with German and Viennese pronunciation.

AN×N = A6×6 =



0 a1,2 0 0 0 0
0 a2,2 a2,3 0 a2,5 0
0 0 a3,3 a3,4 0 0
0 0 0 a4,4 0 a4,6

0 0 0 0 a5,5 a5,6

0 0 0 0 0 0

 (2.15)

In CDHMMs, the state sequence is also not directly observable (it is hidden). What
we observe is a sequence of T observations oT1 = o1, ..., oT . In the case of infinitely
many observations, the observation probabilities of being in state j while observing
symbol ok are given by

bj(ok) = p(ok|sj) = p(Ot = ok|St = sj) (2.16)
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s1 v

p( ok | v)

I l

y:

p( ok | y:) p( ok | I) p( ok | l)

s6

−10 0 10
0

0.1

0.2

0.3

0.4

−10 0 10
0

0.05

0.1

0.15

0.2

−10 0 10
0

0.2

0.4

0.6

0.8

−10 0 10
0

0.02

0.04

0.06

0.08

0.1

a1,2

a2,2 a3,3 a4,4

a5,5

a5,6

a2,3 a3,4 a4,6

a2,5

Figure 2.3: Continuous Density Hidden Markov Models (CDHMM).

= N (ok;µj , σ
2
j ), ok ∈ R (2.17)

bj(ok) ≥ 0, 2 ≤ j ≤ N − 1, , ok ∈ R (2.18)

∫ ∞
−∞

bj(ok) = 1, 2 ≤ j ≤ N − 1 (2.19)

2.1.3 Basic problems for hidden Markov models (HMMs)

Three basic problems that need to be solved for HMMs are [7]:

1. Given an observation sequence oT1 and a model λ how can we compute the prob-
ability of the model producing the observation sequence, i.e., P (oT1 |λ)? (word
recognition → forward algorithm)

2. Given an observation sequence oT1 and a model λ how can we compute an optimal
state sequence sT1 with sT1 = argmaxST1

P (oT1 |ST1 , λ)? (decoding, recognition

→ Viterbi algorithm)

3. How do we adjust the model parameters λ = (A,B), λ = (A,µ,Σ) to max-
imize P (oT1 |λ)? (Maximum Likelihood (ML) training → Baum-Welch
algorithm, Expectation Maximization (EM) algorithm)

9



2 State-of-the-art

2.2 Speech synthesis

Speech synthesis is the task of generating a speech signal from a discrete representation,
which is most of the times written text. Speech synthesis already has a very long
history [11]. Today the most important approaches are parametric synthesis from
HMMs, concatenative synthesis, and hybrid systems [12].

The main problems that have to be solved for speech synthesis from a user per-
spective are intelligibility and naturalness. From a more system oriented perspective
flexibility, and the ability to model all types of speech are important.

The task to produce intelligible, i.e. understandable speech that has the same Word
Error Rate (WER) as natural human speech, was already solved with diphone based
speech synthesis systems [13]. With these systems a set of diphones is recorded for
a language, which comprise a few thousand units, and during synthesis time these
diphones are concatenated and their duration and F0 is adapted.

The task to produce naturally sounding speech was solved with the invention of unit
selection based speech synthesis [14]. With this method a large corpus of diphones
in different contexts is recorded and speech is generated by finding the most suitable
diphone sequence. The design of the recording corpus is a set-cover problem [15].

From a system developer perspective unit selection based speech synthesis has the
disadvantage of being very inflexible in terms of adapting a certain voice or changing
its characteristics. A higher flexibility is achieved by HMM-based parametric speech
synthesis [8, 9] where interpolation and adaptation methods can be used to change
model parameters [16, 17, 18].

A task that is still unsolved is the generation of conversational speech, which is
speech like in a natural human to human conversation. For achieving this it is necessary
to be able to realize variety switching, prosody, and non-linguistic particles (filled
pauses, hesitations, laughing, whispering) as well as the control of all these parameters
from discrete textual input. This is a very hard problem and it can be argued that it
is among the Artificial Intelligence (AI)-complete problems that also comprise natural
language understanding and image understanding.

2.2.1 Applications

There are already numerous applications of speech synthesis, like web readers (http:
//wien.at), screen readers for blind users [19], spoken dialog systems used in call
center automation and information systems, car navigation systems, personal digital
assistants (Siri), and virtual reality applications.

2.2.2 Text-To-Speech synthesis (TTS)

In speech synthesis we generally have to generate speech from a textual representation.
This is practical since a lot of digital textual data is available today and can serve
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2.2 Speech synthesis

as input. For some applications like speech-to-speech translation other than textual
representations on the concept level might be more adequate [20]. But even such
systems often synthesize from text in the end and use the conceptual representation
as an intermediary one. Therefore and since textual input is the largest available
source of input TTS remains the main paradigm.

A TTS system consists of the following three building blocks:

1. Text analysis: Numbers, abbreviations, etc.

2. Grapheme To Phoneme (G2P) conversion

• dictionary look-up

• decision tree based grapheme-to-phoneme rules

3. Prosody prediction (pauses, durations, F0) and waveform generation

• Concatenative: Unit selection speech synthesis

• Parametric: HMM based speech synthesis

• Concatenative and parametric: Hybrid systems

2.2.3 Text analysis

In text analysis we transform a written text into a form that is closer to read speech.
The following example transformatrion illustrates this.

• Example: Sie haben am 5.2.2011 51 Einheiten bestellt. Wollen sie mit ATM
bezahlen?

• Transformed:Sie haben am fünften zweiten zweitausendelf einundfünfzig Ein-
heiten bestellt. Wollen sie mit A T M bezahlen?

We need to be able to analyze date, number (ordinal, cardinal, telephone number,
zip-code, credit card number etc.), and acronyms. For dates and numbers grammars
for a specific language have to be designed. For acronyms lists of acronyms can be
used. Furthermore we need to predict which acronyms are spoken and which are
spelled out (BP vs. BIP).

For transforming numbers we first check if we have a cardinal or ordinal number (i.e.
5. → fünfter / fünftens ). If a cardinal number is detected we can use a grammar to
transform the numeral to a text string. Figure 2.4 shows a part of a German cardinal
number grammar given by a Finite State Transducer (FST) [21].

A FST is a Finite State Automaton (FSA) that accepts a string and outputs /
recognizes another string. FSAs are isomorphic to regular languages, and FSTs are
isomorphic to regular relations. FSTs are closed under inversion (F−1) meaning that
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3:ε 2:zweiunddreißig
1:einunddreißig

...q2 qNq1 ...

3:drei
... qNq1

3:dreihundert q2q1 ...

one-num

two-num

one-num

two-num

0:ε
ε:ε

three-num

q1

one-num

two-num

thre-num

ε:ε

ε:ε
ε:ε

Figure 2.4: Finite state transducer (FST) F for cardinals (numeric-to-written).

ε:3 zweiunddreißig:2
einunddreißig:1

...q2 qNq1 ...

drei:3
... qNq1

dreihundert:3 q2q1 ...

one-num

two-num

one-num

two-num

ε:0
ε:ε

three-num

q1

one-num

two-num

thre-num

ε:ε

ε:ε
ε:ε

Figure 2.5: Finite state transducer (FST) F−1 for cardinals (written-to-numeric).

the inversion of an FSTs F is again a FST [22]. Figure 2.5 shows the respective inverted
FST F−1 for our cardinal number conversion. With inversion we can transform a
generator FST into a recognizer FST.

2.2.4 Grapheme To Phoneme (G2P) conversion

In the second step we have to convert from the textual (grapheme, letters) represen-
tation to the phonetic representations (phonemes). This is done by Grapheme To
Phoneme (G2P) conversions or Letter To Sound (LTS) conversion. The whole process
itself can be done in two steps. First we look up the words in a dictionary. If the
word is not found we use LTS rules to predict the pronunciation. Here we can use
hand-written rules or rules derived automatically. One method for predicting phones
from letters is to learn decision trees.

Figure 2.6 shows part of three rules of a decision tree for converting the letters y, x,
and w in German. The decision tree for x only consists of one leaf, which means that x
always has to be converted to the two phone sequence k s. The letter y is transformed
depending on the context of preceding and following letters (characters). ”n.n=t” is
the question if the character after the next character is a t, ”p=s” is the question
if the previous character is a s, ”p.p=#” is the question if the character before the
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k s

Decision tree for letter y letter wletter x
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ε n=s
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Decision trees for G2P conversion of Standard German
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Figure 2.6: Decision trees for G2P conversion of Standard German.

previous character is the word beginning and so on. Depending on the context of the
letter y it is transformed to one of the phones Y, i:, y, j. For the letter w we also use
the empty phone ε, which means that for these contexts the letter does not generate
a phone.

For learning decision trees we first have to construct an alignment of the training
data by giving a set of allowable grapheme-to-phoneme mappings (graphemes in blue,
phonemes in red). The training data consists of a phonetic lexicon.

begin

wi = p o s t b e a m t e→ p O s t b @ GS a m t @ (a→ GS a)

wj = r a c h e→ r a x ε @ (c→ x, h→ ε).

For each letter we then construct the set of training feature vectors and target
values. If we consider the previous two and following two letters of a letter then we
get for the letter a the following two features ai = [b e a m t] and aj = [# r a c h],
where # denotes word beginning. The target values for the respective features are
f(ai) = GS a and f(aj) = a. Given a set of features F we can define the purity of the
feature set g(f(F )) by the ratio of different phones by number of phones. The feature
set is more pure if it maps the features to a small number of phones. Using this as
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training data, we can devise a learning algorithm.

Algorithm 1 Algorithm for decision-tree based clustering. Set of features F =
{1, ..., n}. f(S) = {p1, ..., pn} returns the phones for the features. g computes the
purity of the phone set.

1: procedure decisiontree(F )
2: if stopping criterion is met then
3: return F
4: else
5: Split all features F using all m questions. {{F1,1, F1,2}, ..., {Fm,1, Fm,2}}
6: j = argmaxi (g(f(Fi,1)) + g(f(Fi,2)))
7: Add question j
8: decisiontree(Fj,1)
9: decisiontree(Fj,2)

10: end if
11: end procedure

2.2.5 Unit selection speech synthesis

For the third step prosody prediction and waveform generation three approaches are
used in state-of-the-art systems. In unit selection synthesis the Viterbi algorithm is
used to find the best sequence of units from a large database. The algorithm uses
two cost functions, a concatenation cost defined between two speech units in the
database and a target cost defined between a unit in the database and a linguistic
target description.

The concatenation cost is defined as Cc(si−1, si) =
∑p

k=1w
c
kC

c
k(si−1, si) where Cck

are spectral and acoustic features that measure the distance between diphones. As
concatenation cost we often use the Euclidean distance between Mel Frequency Cep-
stral Coefficients (MFCC) (MFCC + ∆ features) of diphones (cepi ∈ R26 ).

||cepi−1 − cepi|| =

√√√√ 26∑
j=1

(cepi−1(j)− cepi(j))2 (2.20)

The target cost is defined as Ct(ti, si) =
∑p

j=1w
t
jC

t
j(ti, si) where Ctj are costs defined

on phonetic and prosodic contexts that measure the distance between target unit and
database unit. For the target cost we need to use symbolic features since we compare
a unit description (target unit) with a concrete database unit. Therefore we can use
phonetic and prosodic context, and predicted duration and F0 as features.

The optimization problem of finding the optimal sequence of units (states) with the
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s1 #_n

n

n_a: a:_#

a:

s6

#_n n_a

n_a

a:_#

Diphone unit database

Phonetic description
Target cost

Concatenation cost

Figure 2.7: Diphone unit graph for the Viennese word “nein” [n a:].

Viterbi algorithm can be defined as

Ŝ1:n = argmin
S1:n

C(T1:n, S1:n) =

n∑
i=1

Ct(ti, si) +

n∑
i=2

Cc(si−1, si). (2.21)

Figure 2.7 shows a database of (diphone) units for the Viennese word [n a:]. The
concatenation costs are in solid lines, target costs are in dashed lines. The best path
found by the Viterbi algorithm is shown in bold solid lines. The units along this path
are then concatenated to synthesize the word, hence the name concatenative synthesis.

The Viterbi algorithm is a dynamic programming method [23]. It breaks up the
general problem into sub-problems by using the HMM structure. Then it solves all the
sub-problems. In this way it can find the best possible path in the graph. In real world
systems we have to use a heuristic version of the Viterbi algorithm due to the possibly
large number of sub-problems. In a Viterbi beam search [24] we restrict the number of
paths that are considered for expansion to the n paths with the highest probability /
cost (active path pruning) and / or the paths that have at least probability p (maximal
cost c) (beam pruning). A Viterbi beam search does not always find the best path.

2.3 Hidden Markov Model (HMM) based speech synthesis

In HMM-based speech synthesis we derive model parameters from a speech database,
which are then used for synthesis. For modeling spectral and F0 parameters jointly
we use a multi-stream probability distribution,

bj(o) =
S∏
s=1

[
M∑
m=1

cjsmN (os,µjsm,Σjsm)

]γs
(2.22)
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Figure 2.8: Five state HMM for the phone y: with Gaussian mixture observation PDF.
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Figure 2.9: Re-usage of data with sub-word HMMs (below) as compared to word HMMs (above).

1 ≤ j ≤ N,
S∑
s=1

γs = S (2.23)

where S is the number of streams, M is the number of mixtures for the Gaussian
Mixture Model (GMM), and γs are the stream weights.

We also change from whole word models as described in Section 2.1 to sub-word
models, where one phoneme is modeled by an HMM with 5 states (5 emitting states
plus 2 non-emitting states) as shown in Figure 2.8.

Sub-word models are used to re-use the training data within words / utterances and
across words / utterances as shown in Figure 2.9. Sub-word modeling is also necessary
to be able to synthesize / recognize text that contains a large (possibly unlimited)
vocabulary. For sub-word modeling the EM-training formulas from Section 2.1 have
to be adapted (embedded training).
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Figure 2.10: Speaker dependent HMM-based speech synthesis system (Figure redrawn from [25]).

2.3.1 Speaker dependent HMM based speech synthesis system

In this thesis we use a speaker dependent HMM-based system for training models
for spectral (Mel-cepstrum), excitation parameters (F0), and duration. Figure 2.10
shows the components of a speaker dependent synthesis system [9]. Starting from a
single speaker database with labels we extract excitation (F0) and spectral (MFCC)
parameters and train context-dependent HMM models. For synthesis we transform a
text into a sequence of full context labels and then we use the Maximum Likelihood
(ML) parameter generation algorithm [8], which will be discussed later, to generate
a sequence of excitation and spectral features. This sequence of features is then used
by a vocoder to create synthesized speech. For training full context models we apply
context clustering.

2.3.2 Context clustering

To model context dependencies a variety of contexts like previous and following phones,
syllable features etc. is taken into account. To deal with the curse of dimensional-
ity [26], which appears when a wide context is taken into account, we have to apply
clustering methods to tie states [27, 28, 29]. In data-driven clustering multiple states
are tied to the same probability distribution. This makes the models smaller and
increases the training data per state.
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Figure 2.11: Data-driven state tying for [I] quinphones.

Figure 2.11 shows how different states of two full context models #-m-I-l-C (I in
the left phone context #-M and the right phone context l-C) and a-k-I-t-t (I in the
left phone context a-k and the right phone context t-t) are tied to use the same PDFs
(below) versus an untied full context model.

To tie states and to deal with unseen data (i.e. unseen quinphones) decision-tree
based clustering is performed where the whole possible feature space is clustered. For
clustering of quinphones the quinphone context, acoustic-articulatory features, as well
as syllable and word level features can be used. The clustering questions can be based
on features from any linguistic level.

• preceding, current, and succeeding phones;

• acoustic and articulatory classes of preceding, current, and succeeding phones;

• the part of speech of the preceding, current, and succeeding words;

• the number of syllables in the preceding, current, and succeeding accentual
phrases;

• the position of the current syllable in the current accentual phrase;

• the number of words and syllables in the sentence;

• the specific language variety in the case of clustering of dialects (i.e. Viennese
dialect or Standard Austrian German).
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Figure 2.12: Decision-tree based state tying.

In shared decision-tree clustering we train one decision tree per state, which is
the method mostly used in speech synthesis. In phonetic decision-tree clustering we
train one decision tree per state and phone. This method is mostly used in speech
recognition [30].

For clustering we can use the same clustering algorithm that was used in Subsec-
tion 2.2.4 for G2P conversion. We only need to define an impurity on distributions
and replace the features by the full context model states.

Figure 2.12 shows the result of shared decision-tree clustering for quinphone models.
We can see that there is one separate decision tree trained for the 3rd state of all
quinhone models. By traversing the tree answering the specific questions for one full
context model we find a leaf node that tells us which model we should use for this
state. Separate decision trees are trained for each state and for spectrum, F0 and
duration.

Figure 2.13 shows part of a concrete decision tree for the Mel-cepstrum of the 3rd
state (central state in 5-state HMM) that was trained on speaker data from Standard
Austrian German and Viennese dialect data. In this model we also introduced the
question if the utterance was Standard or dialect (“Is-Viennese-Dialect”). As can be
seen from this figure the question already appears at the top of the decision tree,
with the first question splitting the vowels and non-vowels, and thereby creating two
separate sub-trees for Viennese and Austrian German vowels.
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Klassifikation der Wienerischen und Österreichischen Laute

Figure 2.13: Part of decision-tree for Mel-cepstrum of 3rd state (central state in 5-state HMM) for
variety independent / speaker dependent model with full feature set.

Context clustering with the Minimum Description Length (MDL) principle

The basic clustering algorithm is further improved by used the MDL principle, which
is a formalization of Occam’s razor [28, 29]. The idea is that if two models explain a
certain dataset equally well, then the smaller model should be preferred. To formalize
the principle we need to define what it means for a model to be better than another
model, and we need a measure for the size of a model. As a measure for the quality
of a model we use the likelihood of the training data, to define the size of a model in
case of decision trees is straightforward.

The combination of model quality and size is the description length l(i) of the model
i (selected from the models {1, . . . , I}) given data x = (x1, ..., xn), which is defined as

l(i) = − logPθ̂(i)(x) +
αi
2

log n+ log I (2.24)

where θ̂(i) is the maximum likelihood estimate for the parameters θ(i) = (θ
(i)
1 , ..., θ

(i)
αi ).

The first term is the code length for the data when i is used as a model. The second
term is the encoding length for model i. If the model gets more complex (more pa-
rameters) the first term decreases and the second term increases. We aim to minimize
the description length of the model.
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Figure 2.14: Topology for implicit (above) and explicit (below) state duration. Geometric distribu-
tion (right).

2.3.3 Duration modeling

HMMs include an implicit modeling of state durations through state transition prob-
abilities as described in Section 2.1. With this method we can only model geometric
distributions as shown in Figure 2.14 (right). Figure 2.14 shows the geometric distri-
bution for three values of self-transition probabilities (0.2, 0.5, 0.8). We can see that
we have a higher probability for shorter state durations than for longer ones. The
probability of d observations in state i is given by a geometric distribution:

pi(d) = ad−1
ii (1− aii) d ∈ N (2.25)

Modeling duration with this approach is often sufficient for speech recognition, but
for speech synthesis we need an accurate duration model since the duration of phones
(states) is an essential part of prosody [30]. For accurate duration modeling we want
to be able to model a general class of duration distributions. One such general class is
the normal distribution, which allows us to model the duration of a state by its mean
and standard deviation.

pi(d) =
1√

2πσ2
i

e

(
− (d−µi)

2

2σ2
i

)
(2.26)

We call this type of modeling explicit duration modeling, which leads to hidden
semi-Markov models (HSMMs). The estimation formulas defined in Section 2.1 have
to be adapted to use explicit duration PDFs. For estimating the duration PDFs we
also use decision tree based clustering as it is used for spectrum and F0 models.

2.3.4 Parameter generation

One main innovation, which makes HMM-based speech synthesis possible, is the devel-
opment of parameter generation algorithms that allow for the derivation of a sequence
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of parameters from an HMM that maximizes the likelihood [31]. These parameter
generation also takes dynamic features into account. It can be used for generating
any feature sequence from an HMM, e.g. also for visual or motion features. Given an
HMM lambda the parameter algorithm proceeds as follows.

1. Select a sequence of phone HMMs for the text to be synthesized.

2. Find the most likely sequence of observations given the selected phone models.

3. Take into account dynamic features (derivative of parameters) otherwise only
means are selected.

Since the joint optimization of state and observation sequence is often computa-
tionally too expensive, we can find an approximate solution by splitting the problem
into two sub-problems, finding the optimal state sequence S∗ and finding the optimal
observation sequence O∗ given the optimal state sequence. The whole optimization
can be described as follows.

O∗ = argmax
O

P (O|λ, T )

= argmax
O

∑
S

P (O,S|λ, T ) (P (A) =
∑
B

P (A,B))

≈ argmax
O

P (O|S∗, λ, T ).

S∗ = argmax
S

P (S|λ, T ) (2.27)

The overall goal is to find the optimal observation sequence O∗. This can be done
by maximizing the probability of observation sequences O given a certain HMM λ and
a time T (without loss of generality). By summing over all possible state sequences of
length T we can solve this optimization. This is computationally too expensive, that’s
why we condition on the most likely state sequence S∗. S∗ can be found by a separate
optimization step.

For finding S∗ we maximize the probability of state sequences given a certain HMM
λ and a time T . T can be set to the sum of mean values

∑K
k=1 µk to get the average

speaking rate if the explicit state duration is a normal distribution. In this case the
optimal state sequence S∗ is simply the one where we are µk times in state Sk. If we
want to have a different duration than average (slower of faster) we can get the state
duration dk as

dk = µk + ρσ2
k 1 ≤ k ≤ K (2.28)
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Figure 2.15: Duration synthesis.

ρ =

(
T −

∑K
k=1 µk

)
∑K

k=1 σ
2
k

(2.29)

Given a certain duration T that we want to achieve we can compute a parameter
ρ that can be used to modify the standard deviation of the duration distributions in
the appropriate way. dk is then the duration of states k for the best state sequence
S∗ of length T . If we only want to find the static observation features we can just
take dk times the mean values of state Sk of the respective spectrum and F0 models.
Figure 2.15 shows the process of duration synthesis.

Now we want to find the optimal observation sequence O∗ given the optimal state
sequence S∗ with T states for static and dynamic parameters. C are the static fea-
ture vectors, O contains static and dynamic feature vectors, i.e. O = WC. W
is a given matrix that computes O (static and dynamic features) when applied to
the static features. Since dynamic features are computed from static features via
linear regression this computation can also be written in matrix form. Maximizing
P (O|S∗, λ, T ) with respect to O is the same as maximizing P (WC|S∗, λ, T ) with re-
spect to C = [c1, ..., cT ]. This maximization can be achieved by setting the derivative
to zero.

∂P (O|S∗, λ, T )

∂C
=  (2.30)

The derivative gives us the static parameter sequence C that is optimal in terms of
maximal likelihood concerning static and dynamic features given state sequence S∗.
Taking the derivative and setting to zero gives

W TΣ−q WC = W TΣ−q µq (2.31)
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Figure 2.16: Hybrid speech synthesis system where speech generated from HMMs is used in the
target cost function.

C = (W TΣ−W )−1W TΣ−µq (2.32)

where C is a MT × 1 static feature vector per state, µq is a 3MT × 1 sequence
of mean vectors per state, Σ−q is a 3MT × 3MT sequence of inverse of diagonal co-
variance vectors per state, and W is a 3MT ×MT weight matrix. In this way we can
compute the static observation sequence C that is optimal given the dynamic features.
C gives us the optimal spectrum and F0 parameters that we can use to synthesize
speech.

2.3.5 Hybrid systems

A general problem of HMM-based speech synthesis systems is their tendency of over-
smoothing, which mostly comes from the averaging of spectral features. Unit selection
based speech synthesis, which was described in Subsection 2.2.5, does not have this
problem since the natural speech signal is used. Unit selection does however produce
errors at bad concatenation points. To combine the best of both worlds hybrid systems
have been proposed recently where trajectories from HMM-based synthesis are used
to define the target cost. In terms of computation these systems need to generate
parameters first and then do the Viterbi search over the unit database.
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2.4 MusicXML

Figure 2.17: Part of the musical score from a Latin song (Figure from [1]).

2.4 MusicXML

MusicXML [1] is an eXtended Markup Language (XML) format that can be used to
describe musical scores. As XML format it has the advantage of being easily parsable
in many computer languages through defined libraries. In Chapter 3 we develop a
parser that splits up large MusicXML files of whole opera songs into utterance size
chunks. It was invented by the company MAKEMUSIC [1] and is a de facto standard
that can be processed by the main music editing programs.

Version 3.0 of the MusicXML format was released in August 2011. Version
3.0 includes both a Document Type Definition (DTD) and W3C XML
Schema Definition (XSD) [1].

MusicXML is available under a public license. For our manual editing of MusicXML
we used the MuseScore [32] program that is available for Windows and Linux. It can
be used to play MusicXML files as MIDI files, and can also transform MusicXML files
to MIDI files from the command line.

Figure 2.17 shows part of the musical score of a Latin song. This song only consists
of a singing part. In opera songs we typically have a singing and a piano part. We
can see several syllables where syllable duplication is necessary since multiple notes
are attached to one syllable. This is indicated by the slur symbol ^ or _. The
one syllable word Quem at the beginning is associated with two notes. Suppose the
phonetic transcription of Quem is k w e m, then it should be sung as k w e - e m
with the respective notes G4 and F4 on the now two syllable word.

The MusicXML file starts with some header information and information for the
different parts of the score. The whole part is divided into measures (<measure> ...
</measure>). In this example there is only one measure. Each measure can have
attributes that define the divisions, key, and clef, which are in this case

<attributes>

<divisions>8</divisions>

<key>

<fifths>0</fifths>
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<mode>major</mode>

</key>

<clef>

<sign>G</sign>

<line>2</line>

</clef>

</attributes>

The measures then contain the different notes with their pitch, slur, and lyric infor-
mation

<note>

<pitch>

<step>G</step>

<octave>4</octave>

</pitch>

<duration>8</duration>

<type>quarter</type>

<notations>

<slur number=“1” placement=“below” type=“start”/>

</notations>

<lyric number=“1”>

<syllabic>single</syllabic>

<text>Quem</text>

</lyric>

</note>

The first note in this case is the quarter note G4. It is also indicated that a slur
starts here with information for placement of the slur in the editor. The lyric contains
syllabic information saying that it is a single syllable. For multi-syllabic words like
Chri - sti in this example the syllabic element can have the value begin, middle, or
end. The note after this note contains no information on lyrics but an information
that the slur end there.
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2.5 Singing synthesis

2.5 Singing synthesis

By singing synthesis we refer to the task of generating an acoustic signal of a singing
person. The synthesis output is thereby controlled by a text input and a musical score
that is aligned with the text. The textual data is also divided into syllabic sequences.
This input data can be given as MusicXML [1] file. Several methods for synthesis of
singing have been proposed in the literature, which we will shortly discuss here.

2.5.1 Articulatory synthesis of singing

[h]
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Figure 1: An overview of the articulatory synthesizer. The in-
put to the synthesizer is a gestural score, and the output is the
radiated sound.

ance /ka:nu:/ in Fig. 1. We differentiate between six types of
gestures that are arranged in different rows in the score. The
first three types are tract forming gestures (vocalic gestures),
constriction forming gestures (consonantal gestures), and velic
gestures. They control the parameters of the vocal tract model.
The remaining three types of gestures control the glottal rest
area (glottal aperture),F0, and lung pressure, i.e., the parame-
ters of the model of the vocal folds. The temporal intervals of
the gestures are separated by vertical lines. Each gesture spec-
ifies a target for one or more parameters of the vocal tract or
vocal folds. The targets for vocalic and consonantal gestures
represent certain predefined vocal tract shapes. In the example,
these are the shapes for the vowels /a:/ and /u:/ and the conso-
nants /g/ and /d/. During the temporal overlap of a vocalic and a
consonantal gesture, the underlying target is given by the vocal
tract shape of the consonant coarticulated with the overlapping
vowel. To produce the voiceless plosive /k/ and the nasal /n/
in /ka:nu:/, the glottis is opened during the /g/-gesture and the
velum is lowered during the /d/-gesture with the corresponding
glottal and velic gestures. In this way, certain groups of conso-
nants, like{d, t, n}, can be represented by only one target shape
(in the example the shape for /d/), and the actual consonant pro-
duced from this set depends on the simultaneous existence or
absence of a velic or glottal aperture. For the lower four types
of gestures in Fig. 1, the associated parameter target values are
directly represented by the height of the horizontal dashedlines.
The execution of the gestures consists in the successive approx-
imation of the targets simulated by critically damped, linear,
third-order dynamical systems. Gestural scores can be created
either manually by means of a graphical editor, or by rule, asin
the case for singing synthesis.

3. Extensions of the synthesizer for the
synthesis of singing

3.1. Rule-based generation of gestural scores

For the synthesis of singing, we have implemented a few ex-
tensions to the speech synthesizer. First of all, a simple xml-
format was devised in order to specify the song notes and their
attributes. For our demonstration song “Dona nobis pacem”,the
file looks as follows.

<song octaveOffset="0">
<note beatsPerMinute="110" pitch="rest"
type="1/2" vibrato="0.5" lyrics=""
loudness="1.0" whisper="0"/>

<note pitch="g3" type="1/8" lyrics="d o:"/>
<note pitch="d3" type="1/8" lyrics="o:"/>
<note pitch="h3" type="1/2" lyrics="n a:"/>

<note pitch="a3" type="1/8" lyrics="n o:"/>
<note pitch="d3" type="1/8" lyrics="o:"/>
<note pitch="c4" type="1/2" lyrics="b i: s"/>

...

</song>

The most important attributes for a note are the pitch (note
letter+octave), type (note length) and the lyrics (here in SAMPA
notation). Furthermore, attributes can be specified for theover-
all speed in beats per minute, the vibrato amplitude in semi-
tones, the loudness, and the degree of whisper. When any of
these attributes are not specified for a note, they take the value
from the last note, for which they were specified. In our demo

Figure 2.18: From gestural scores to trajectories
in the articulatory synthesizer (Figure
from [33])

[33] proposes an articulatory
singing synthesis system. The
articulatory synthesizer takes
gestural scores, which are fed
into models of the vocal tract
and the vocal folds that results
in a dynamic features trajectory.
This trajectory can then be used
to control the synthesizer. The
gestural score can either be de-
veloped by hand or rules can be
used. One disadvantage of this
synthesizer is the difficulty to
obtain enough articulatory data
to train models automatically,
as can be done with acoustic
recordings.

Figure 2.18 shows part of
the articulatory synthesizer that
transforms articulatory gestures
to feature trajectories. The first
three gestures control the vocal
tract model, the remaining three
gestures control the vocal fold
model. The parameters of the vocal tract were determined by Magnetic Resonance
Image (MRI) images of sustained speech sounds. Vocal tract parameters for co-
articulated consonants were determined from dynamic MRI images. The vocal tract
and vocal fold model is used to create a dynamic area function from the articulatory
gestures.

An important feature of the synthesizer are F0 dependent target shapes for vowels,
which reflect the fact that singers often change the vocal tract when singing a certain
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vowel depending on the F0.

2.5.2 Conversion from speaking voice to singing voice
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Abstract 
A vocal conversion system that can synthesize a singing voice 
given a speaking voice and a musical score is proposed. It is 
based on the speech manipulation system STRAIGHT [1], and 
comprises three models controlling three acoustic features 
unique to singing voices: the F0, duration, and spectral 
envelope. Given the musical score and its tempo, the F0 
control model generates the F0 contour of the singing voice 
by controlling four F0 fluctuations: overshoot, vibrato, 
preparation, and fine fluctuation. The duration control model 
lengthens the duration of each phoneme in the speaking voice 
by considering the duration of its musical note. The spectral 
control model converts the spectral envelope of the speaking 
voice into that of the singing voice by controlling both the 
singing formant and the amplitude modulation of formants in 
synchronization with vibrato. Experimental results showed 
that the proposed system could convert speaking voices into 
singing voices whose quality resembles that of actual singing 
voices. 

1.  Vocal conversion system  
A block diagram of the proposed vocal conversion system is 
shown in Fig. 1. The system takes as the input a speaking 
voice of reading the lyrics of a song, the musical score of a 
singing voice, and their synchronization information in which 
each phoneme of the speaking voice is manually segmented 
and associated with a musical note in the score. This system 
synthesizes the singing voice in five steps:  (1) decompose the 
speaking voice into three acoustic parameters － F0 contour, 
spectral envelope, and aperiodicity index (AP) － estimated 
by STRAIGHT (analysis part), (2) generate the continuous F0 
contour of the singing voice from discrete musical notes by 
using the F0 control model, (3) lengthen the duration of each 
phoneme by using the duration control model, (4) modify the 
spectral envelope and AP by using the spectral control model 
1, (5) synthesize the singing voice by using STRAIGHT 
(synthesis part), and (6) modify the amplitude of the 
synthesized voice by using the spectral control model 2. 

2. F0 control model 
Figure 2 shows a block diagram of the proposed F0 control 
model [2] that generates the F0 contour of the singing voice 
by adding F0 fluctuations to musical notes. Our model can 
deal with four types of dynamic F0 fluctuations: (1) overshoot, 
which is a deflection exceeding the target note after a note 
change [3]; (2) vibrato, which is a quasi-periodic frequency 
modulation (4–7 Hz) [4]; (3) preparation, which is a 
deflection in the direction opposite to a note change observed 
just before the note change; and (4) fine fluctuation, which is 
an irregular frequency fluctuation higher than 10 Hz [5]. 
F igure  3  shows  examples  o f  F0  f luc tua t ions .  Our   
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Figure 2.19: Vocal conversion system diagram (Fig-
ure from [34]).

[34, 35] proposes a system that
can convert a speaking voice into
a singing voice by using the
STRAIGHT vocoder [36]. This
vocoder can also be used for
HMM-based speech and singing
synthesis and will be discussed
in Subsection 2.6.5. Figure 2.19
shows a diagram of the vo-
cal conversion system. First
the speaking speech signal is
analyzed by the STRAIGHT
vocoder into spectral, F0, and
aperiodicity parameters. Spec-
tral and aperiodicity parame-
ters are modified by a dura-
tion model and a spectral model.
F0 parameters are taken from
the musical score that is to be
synthesized and are modified by
a F0 control model. The F0
model modifies the flat F0 con-
tour coming from the musical
score by taking into account the following four phenomena.

1. Overshoot: deflection exceeding the target note after a note change.

2. Vibrato: a quasi-periodic frequency modulation (4-7 Hz).

3. Preparation: a deflection in the direction opposite to a note change
observed just before the note change [35].

All four phenomena can be modeled by a second order system, where the parameters
of the system can be learned from F0 contours extracted from natural singing signals.
If incorporated into a singing synthesis system a model for the parameters can also
be learned and parameters can be changed dynamically. The transfer function of the
second order system is given as

H(s) =
k

s2 + 2ζωs+ ω2
(2.33)
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Abstract 
Rule-driven formant synthesis is a legacy technique that still 
has certain advantages over currently prevailing methods. The 
memory footprint is small and the flexibility is high. Using a 
modular, interactive synthesis engine, it is easy to test the 
perceptual effect of different source waveform and formant 
filter configurations. The rule system allows the investigation 
of how different styles and singer voices are represented in 
the low-level acoustic features, without changing the score. It 
remains difficult to achieve natural-sounding consonants and 
to integrate the higher abstraction levels of  musical 
expression. 
Index Terms: formant synthesis, singing 

1. Background 
Singing synthesis at KTH has its roots in the 1970’s, when 
Sundberg and Gauffin modified the text-to-speech systems 
developed by Carlson and Granström. An analogue singing 
synthesiser called MUSSE was built by Larsson in 1977 [1]. 
It included vibrato and other song-specific features, and could 
be played with a piano keyboard and joystick, or be remote-
controlled by a minicomputer running a rule system. In the 
1990’s, several digital implementations of MUSSE were 
made by Ternström and Berndtsson [2]. The synthesis model 
described here is a descendant of these, built with Aladdin, a 
commercial DSP tool that was another outcome of this work 
(Aladdin Interactive DSP 3.0, Hitech Development AB, Täby, 
Sweden).  

2. Rule system 
The rule system is based on a legacy version of Rolf 
Carlson’s RULSYS, a FORTRAN program in DOS, but we 
hope to modernise this any decade now, by merging the 
pronunciation rules into our more recent Director Musices 
software. The original text-to-speech rules (for Swedish) were 
extensively modified for singing, and rules for the musical 
performance have been added. RULSYS compiles the script 
of rules, and also a singer definition script, and then renders 
the score (with lyrics and melody) into a parameter file. There 
are currently 28 integer parameters, which are updated 100 
times per second. The parameter file is transferred to the 
DSP-resident synthesis model from the host PC. 

3. Synthesis model 
A block diagram of the synthesis model is shown in Figure 
1.The signal that controls the nominal F0 is perturbed by 
white noise, and then smoothed with a moderately resonant 
filter at about 4 Hz. This simulates both irregular flutter and 
smoothed F0 transitions with adjustable overshoot [3]. To this 
an adjustable sinusoidal vibrato is added. The vibrato cycle is 
not aligned with the note boundaries.  

  The widely studied LF model [4] of the source waveform is 
not used, because it is awkward to implement under the 
multiple constraints of high precision in F0, minimal aliasing 
and of the Aladdin run-time library1. Instead, the source 
oscillator produces a train of sinc pulses, sin(x)/x, with a flat 
spectrum. The pulse excitations are independent of the 
sampling interval. Each pulse is windowed to the glottal 
period time T0 with a Hanning-like window. Even for small 
values of the glottal period time T0 (high values of F0), 
aliasing with this window is insignificant, at 16 kHz sampling 
rate. The reasons for using such a low sampling rate are partly 
the desire to synthesise in real time on legacy hardware, and 
partly that raising the sampling rate would necessitate a 
departure from our standard tract configuration with eight 
formants. 

 

Sinc pulse
generator

HP @ 25 Hz
DC blocker

Variable 
slope filter

Notch
filter

LP filter
-24 dB/oct

T0
spectrum

slope delta-L0 high cutoff

Formant chain 
F1...F8

Fn, Bn

fundamental frequency
vibrato extent
vibrato frequency
flutter extent
flutter center frequency
flutter bandwidth

gain

glottal
amplitude

vocal intensity
relative 

level of the
fundamental

outputNoise +HP2

aspiration

+

Fricative filters K1, K2

frication

Zero
1.8 kHz

Sinc pulse
generator

HP @ 25 Hz
DC blocker

Variable 
slope filter

Notch
filter

LP filter
-24 dB/oct

T0
spectrum

slope delta-L0 high cutoff

Formant chain 
F1...F8

Fn, Bn

fundamental frequency
vibrato extent
vibrato frequency
flutter extent
flutter center frequency
flutter bandwidth

gain

glottal
amplitude

vocal intensity
relative 

level of the
fundamental

outputNoise +HP2

aspiration

+

Fricative filters K1, K2

frication

Zero
1.8 kHz

 
 
Figure 1. Block diagram of the current KTH formant synthesis 

model. 
  
   To approximate the glottal pressure waveform, the sinc 
oscillator is followed by four filters: (1) a DC blocker, being a 
first order high-pass filter at 25 Hz; (2) a variable slope filter, 
with a cutoff fixed at 100 Hz and a slope adjustable from –12 
to 0 dB per octave in 0.01 dB increments; (3) a notch filter 
whose resonance frequency follows  F0  so as to give control 
over the relative level  ∆L0  of the fundamental partial only, 
from –20 to +20 dB; and finally (4) a fourth-order variable 
low-pass Butterworth filter that is used to attenuate further the 
high end of the source spectrum. An example source spectrum 
is shown in Figure 2.  
     The finished source signal is fed into a chain of formant 
filters, F1…F8. The model has no nasal branch. An almost 
gaussian noise generator feeds a fricative branch with two 
resonance filters. The same noise is used for aspiration and 
for randomisation of F0 flutter.  
   Conventionally, formant synthesis more or less stops at 
4-5 kHz. Here, a recent improvement to the synthesis is the 
grouping of formants F6-F8 at 5800, 6500 and 7100 Hz, with 
bandwidths of 300, 300 and 370 Hz. This creates a cluster 
around 6500 Hz which mimics a similar cluster that is often 
found in loud singing voice, but some 40-50 dB below the 

Figure 2.20: Formant singing synthesis system (Figure from [38]).

where ω is the natural frequency, ζ is the damping coefficient and k is the propor-
tional gain of the system. By optimizing the system parameters on actual F0 contours
using the non-linear least squares method optimal values for ω, ζ, and k are found for
overshoot, vibrato and preparation models.

The duration model changes the duration dependent on empirically found parame-
ters and duration constraints coming from the musical score. The first spectral model
emphasizes the peak of the spectral envelope at the so called “singing formant”, which
was shown by [37] to lie near 3 kHz.

Then the modified parameters are used to synthesize the signal with the STRAIGHT
vocoder. After synthesis another spectral control model is applied that synchronizes
the formant amplitude with the frequency modulation of the F0 contour.

2.5.3 Formant based synthesis of singing

[38] proposes a rule-based formant synthesis system that has the advantage that is can
be used without any acoustical training data. Figure 2.20 shows the system diagram
of the formant synthesis system. The system takes text data and musical score as
input and generates 28 parameters at 100 Hertz. These parameters are then used to
control the formant synthesizer.

2.5.4 Diphone based singing synthesis system VOCALOID

[39] proposes a singing synthesis system based on waveform concatenation. At record-
ing time all possible combinations of consonant-vowel, vowel-consonant, vowel-vowel
have to be recorded. This technology was developed by Yamaha and is licensed to
other companies that sell commercial versions of singing synthesizers. In synthesis the
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Figure 2.21: Basic speaker dependent HMM-based singing synthesis system (Figure redrawn af-
ter [40])

pitch of the selected units has to be changed to the desired pitch and the timbre has
to be smoothed at concatenation points. All this is done in the frequency domain.
For changing the pitch the power spectrum is divided into different regions, which are
then scaled to the desired pitch.

2.6 Hidden-Markov-Model (HMM) based singing synthesis

The system that will be used in this thesis is based on HMMs. Acoustic singing
synthesis has already been investigated within the HMM framework. HMM-based
singing synthesis uses the parameter generation algorithm that was introduced in
Subsection 2.3.4 to generate the necessary parameters. The basic HMM-based singing
synthesis system is shown in Figure 2.21.

The system architecture of the singing system is similar to the one shown in Subsec-
tion 2.3.1 for speaker dependent speech synthesis. Instead of the textual input data
a musical score or MusicXML transcriptions are used, and also different features are
used for training of spectral, F0, and duration models.
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2.6.1 Context and time-lag modeling

[41] first proposed to use the HMM framework for singing synthesis. As contextual
features for clustering [41] introduced the following features:

• phoneme: The preceding, current, and succeeding phonemes.

• tone: The musical tones of the preceding, current, and succeeding
musical notes (e.g. “A4”, “C5#”, etc.).

• duration: The durations of the preceding, current, and succeeding
musical notes (in 100 ms unit).

• position: The positions of the preceding, current, and succeeding mu-
sical notes in the corresponding musical bar (in triplet thirty-second
note) [41].

For alignment between musical score and voice, the system developed in [41] has
introduced a time-lag model. In this way it can model the time difference between note
timing from score information and actual timing from a singer that is not following
the musical score exactly. A separate decision tree is trained for the time-lag models
by comparing the timing from the musical score with the actual timing from a forced
alignment of training data and models.

2.6.2 Rich context modeling, vibrato modeling, and F0-shifting

[40] introduces an HMM-based singing voice synthesis system that uses F0-shifted
pseudo data for training and includes a simple periodic modeling of vibrato. [40] also
defines an extended set of contextual features used for training the different models.
The features according to [40] are:

• Phoneme

– Quinphone: a phoneme within the context of two immediately
preceding and succeeding phonemes.

• Mora

– The number of phonemes in the (previous, current, next) mora.

– The position of the (previous, current, next) mora in the note.

• Note

– The musical tone, key, beat, tempo, length, and dynamics of the
(previous, current, next) note.

– The position of the current note in the current measure and
phrase.
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– The tied and slurred flag.

– The distance between the current note and the (next, previous)
accent and staccato.

– The position of the current note in the current crescendo and
decrescendo.

• Phrase

– The number of phonemes and moras in the (previous, current,
next) phrase.

• Song

– The number of phonemes, moras, and phrases in the song [40].

Through the decision tree based clustering relevant features are selected for building
up the decision trees for spectrum, F0, and duration. For training the model for F0
data, log F0 is shifted up or down in halftones, which largely increases the available
amount of training data. Vibrato is assumed as a periodic fluctuation of F0 and two
vibrato parameters are estimated from the training data and added to the observation
vector for training a separate stream for the vibrato parameters. [40] also introduces
the SINSY [3] synthesis system that can use MusicXML as input for synthesis.

2.6.3 Adaptive F0 modeling

Since the correct modeling of F0 is of special importance in singing synthesis [42]
proposes a method that models F0 differences between musical score and data within
the adaptive HMM-based framework using speaker adaptive training [43].

2.6.4 Syllable allocation and duplication

[44] extends a Japanese singing synthesis system for the English language. This system
also includes a vibrato modeling component, that extracts vibrato features for training
and also synthesizes these features for F0 generation. Otherwise it is similar to the
basic singing synthesis system discussed above.

As an extension for the English language [44] introduces syllabic stress as an ad-
ditional feature that is used in clustering. This is achieved by introducing several
placeholders for language independent contexts in previous, current, and next sylla-
ble, which is used for English as feature indicating stress or no stress, and is undefined
for Japanese.

Syllable allocation refers to the task of synchronizing the syllable structure found
in MusicXML with the syllable structure from the lexicon. The MusicXML syllable
structure is on the grapheme (letter) level, while the syllable structure from the lexicon
is on the phonemic level. Mostly these two transcriptions agree, but there are some
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Table 2.1: Diphthong duplication rules (Table from [44]).

Original ey ay ow aw oy

Duplicated eh, ey aa, ay ao, ow aa, aw ao oy

cases where they may be different. Figure 2.22 shows such a case where we have two
syllables at the grapheme level in the MusicXML transcription and three syllables in
the lexicon for the English word everything. If we apply the constraint that we have
to assign at least one phonetic syllable to one grapheme syllable, there are two possible
assignments.

Table 1. Relationships between Japanese strings and pronunciation.
String Mora げ ん こ つ や ま の た ぬ き さ ん
Pronunciation Mora ge N ko tsu ya ma no ta nu ki sa N

Phoneme g e N k o ts u y a m a n o t a n u k i s a N

Table 2. Relationships between English strings and pronunciation.
String Word rhythm of the classical music

Syllable rhy thm of the clas si cal mu sic
Pronunciation Syllable rih dhaxm ahv dhax klae sih kaxl myuw zihk

Phoneme r ih dh ax m ah v dh ax k l ae s ih k ax l m y uw z ih k

3. ENGLISH SINGING VOICE SYNTHESIS
3.1. Lyrics of English musical scores
Lyrics in Japanese musical scores are generally written in kana
characters, which can be converted into labels by using a mora-to-
phonemes table. On the other hand, English lyrics are generally
written in words, and a word-to-phonemes table is not sufficient for
words, like “the” and “lead” for which the pronunciation depends
on the context. Thus, morphological analysis is needed to convert
the word sequence into syllable and phoneme sequences. A musical
phrase that is an uttered part between musical rests is regarded as
a sentence and analyzed. A syllable consists of a vowel (syllable
nucleus) and consonants around it. Tables 1 and 2 show the relation-
ships between strings and pronunciation in Japanese and English
respectively. In these tables, vowels are indicated by boldface.

Contexts for English singing voice synthesis are designed by
expanding contexts for Japanese one [4]. English syllables and
Japanese moras are allocated to a common level in the context de-
sign to standardize contexts of these languages. In addition, a new
area is appended to the context design to address language depen-
dent contexts, e.g. stress and accent, which are used only in English.
The proposed context design is presented in Table 3. The proposed
area is indicated by boldface.

In this paper, the Flite [15] is used for morphological analysis,
and the CMU pronouncing dictionary [16] is used as the word dic-
tionary. The phoneme set consists of phonemes in CMU pronounc-
ing dictionary, long silence “sil”, silence neighboring uttered parts
“pau”, and breath “br”.

3.2. Syllable allocation methods
The number of syllables for each word is obtained by morphological
analysis. However, it is not always equal to the number of corre-
sponding notes. Therefore, a method for allocating syllables to notes
is required. Here we propose two methods.
1: Left-to-right allocation

In this method, syllables in a word are allocated to corresponded
notes one-by-one from the head note. If the number of syllables
is not equal to that of notes, the remaining syllables are allocated
to the tail note or each of all remaining notes receives a syllable
duplicated from the last syllable.

2: Score-based allocation
In this method, syllables in a word are allocated to corresponded
notes based on the number of characters in each note. Each note
that has no syllable receives a syllable duplicated from the syl-
lable of previous note. The allocation procedure comprises three
steps.

Step 1: Count number of characters corresponding to each
note
First, the number of characters corresponding to each note is
counted. A character denotes a letter in a lyric string in Ta-
ble 2. Since many syllables should be allocated to notes that

every         -         thing

1:       [eh]

2: [eh | v, r, iy]

[v, r, iy | th, ih, ng]

[th, ih, ng]

Fig. 2. Two methods for syllable allocation.

have many vowels (syllable nucleus), we count “a”, “e”, “i”,
“o”, and “u”, which tend to be vowels, as two characters in this
paper. Table 2 shows an example. The word “classical” has two
“a” and one “i”, and they are allocated to three syllables one-by-
one as vowels. Similarly, one of the exceptions to “a”, “e”, “i”,
“o”, and “u” being vowels is “rhythm” in Table 2. Although it
contains none of these letters, its pronunciation includes some
vowel sounds.

Step2: Calculate score for each note
The score wn of a note n is defined as

wn =
Scn∑N

n′=1 cn′
, (1)

where cn, N and S denote the number of characters correspond-
ing to note n, the number of notes in a word, and the number of
syllables obtained by morphological analysis respectively. The
summation of all scores is equal to the number of syllables.

Step3: Determine allocation of syllables to notes
Finally, the number kn of syllables allocated to each note n is
determined. The numbers are initialized to 0. The note with
the highest score, n̂, is selected, and kn̂ and wn̂ are updated
to kn̂ = kn̂ + 1 and wn̂ = wn̂ − 1. The kn for all n are
obtained after S iterations of this procedure. Note that at least
one syllable has to be allocated to the head note of a word.

Figure 2 shows an example illustrating these two methods. The
word “everything” is converted into three syllables “eh | v, r, iy | th,
ih, ng”. The symbol “|” represents a syllable boundary. If the word
corresponds to two notes, method 1 allocates syllables one-by-one
from the head note and allocates all remaining syllables to the tail
note. As a result, one syllable “eh” is allocated to the first note, and
two syllables “v, r, iy | th, ih, ng” are allocated to the second note. In
method 2, because of S = 3, c1 = 7, and c2 = 5, the score for each
note is obtained as

w1 = (3 × 7) / (7 + 5) = 1.75, (2)
w2 = (3 × 5) / (7 + 5) = 1.25. (3)

Thus, two syllables, “eh | v, r, iy”, are allocated to the first note, and
one syllable, “th, ih, ng”, is allocated to the second note.

3.3. Syllable duplication methods
If the number of notes is smaller than that of syllables, there are some
notes without a syllable. We propose two methods for allocating
a syllable to each of these notes by duplicating the syllable of the
previous note.

Figure 2.22: Two different syllable allocation methods
(Figure from [44]).

[44] proposes two syllable al-
location methods, one left-to-
right method that results in the
first allocation in Figure 2.22,
and one score based method.
With the score-based allocation
method the number of charac-
ters in the MusicXML syllables
are counted, where characters
that often belong to vowels (a, e,
i, o, u) are counted twice. Based
on this score cn a score wn for each note is computed as

wn =
Scn∑N
k=1 ck

(2.34)

where N denotes the number of notes in a word and S denotes the number of
syllables from the lexicon. Using this score wn the syllables are allocated with an
iterative algorithm.

Table 3. Proposed context design. English syllables and Japanese moras are allocated to common level, and new area for language dependent
context is appended. The proposed area is indicated by boldface.

Phoneme Quinphone. (Phoneme within the context of two immediately preceding and succeeding phonemes)
Syllable Number of phonemes in {previous, current, next} syllable.
(Mora) Position of {previous, current, next} syllable in note.

Language dependent context in {previous, current, next} syllable.
(English: with or without {accent, stress}, Japanese: undefined)

Note Musical {tone, key, beat, tempo, and length} of {previous, current, next} note.
Position of current note in {measure, phrase}.
With or without a slur between current and {previous, next} note.
Dynamics to which current note belongs.
Difference in pitch between current note and {previous, next} note.
Distance between current note and {next, previous} {accent, staccato}.
Position of current note in current {crescendo, decrescendo}.

Phrase Number of {syllables, notes} in {previous, current, next} phrase.
Song Number of {syllables, notes} / Number of measures.

Number of phrases.

Table 4. Diphthong duplication rules.
Original ey ay ow aw oy
Duplicated eh, ey aa, ay ao, ow aa, aw ao, oy

smile smi     -     le

One note Two notes

[s, m, ay, l] a: [s, m, ay]

b: [s, m, aa]

[ay, l]

[ay, l]

Fig. 3. Two methods for duplicating syllables.

a: Simple duplication
In this method, the nucleus of the syllable allocated to the previ-
ous note is simply duplicated, and the syllable is divided.

b: Rule-based duplication
Consecutive diphthongs due to duplication may degrade the con-
tinuity of a singing voice, so we defined the duplication rules for
diphthongs shown in Table 4.

Figure 3 shows an example illustrating these syllable duplication
methods．The word “smile” has one syllable, “s, m, ay, l”, and it
corresponds to two notes. In method a, “ay” is simply duplicated
as “s, m, ay” and “ay, l”. In method b, the “ay” of the first note is
converted to “ah” by using a duplication rule.

4. EXPERIMENTS
To evaluate the effectiveness of the proposed methods and compare
Japanese and English singing voice synthesis, we conducted subjec-
tive experiments. Twenty English songs sung by a female singer who
was a bilingual student were used for training English models, and
five songs were used for evaluation. For comparison, 17 Japanese
songs sung by the same singer were used for training Japanese mod-
els, and five songs were used for evaluation. The total length of the
voiced parts was adjusted to about 30 minutes for each training data
set. Singing voice signals were sampled at a rate of 48 kHz and win-
dowed with a 5-ms shift. The feature vectors were the spectral, ex-
citation, and vibrato feature vectors. The spectrum parameter vector
consisted of 49 STRAIGHT [17] mel-cepstral coefficients including
the zero-th coefficient. The excitation parameter vector consisted of
log F0. The vibrato parameter vector consisted of fluctuation ampli-
tude and frequency. In addition to these parameters, their deltas and
delta-deltas were used.
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Fig. 4. Effect of syllable allocation and duplication methods.

A seven-state (including the beginning and ending null states),
left-to-right, no-skip structure was used for the MSD-HSMM [12]
[18]. The phoneme alignment results for the training data obtained
by using the deterministic annealing EM (DAEM) [19] algorithm
were used as the initial phoneme boundary labels. A decision-tree-
based context-clustering technique was separately applied to the dis-
tributions for the spectrum, excitation, vibrato, state duration, and
time lag. The MDL criterion [20] was used to control the size of
the decision trees. The heuristic weight α for the penalty term in
Equation (1) in [20] was 3.0. Ten Japanese subjects were asked to
evaluate the naturalness of the synthesized singing voices on Mean
Opinion Score (MOS) with a scale from 1 (poor) to 5 (good). Each
subject was presented 10 randomly selected musical phrases from 30
musical phrases. The average length of the musical phrases was 8.1
seconds. Three experiments were carried out in a sound-proof room.

4.1. Experiment of syllable allocation and duplication
In this experiment, combinations of syllable allocation and duplica-
tion methods were compared. The syllable allocation methods were
defined as follows.

1: Left-to-right allocation
2: Score-based allocation

The syllable duplication methods were defined as follows.
a: Simple duplication
b: Rule-based duplication

The four possible combinations (1-a, 1-b, 2-a, and 2-b) were evalu-
ated in terms of the MOS.

As shown in Fig. 4, combinations 1-b, 2-a and 2-b obtained
higher score than combination 1-a, and combination 2-b obtained
the highest score. This indicates the superiority of the score-based

Figure 2.23: Syllable duplication (Figure from [44]).

Syllable duplication is neces-
sary for cases where multiple dif-
ferent notes are mapped to one
syllable, which happens very of-
ten in opera singing. For these
cases [44] proposes two differ-
ent method, a simple duplica-
tion method, and a rule based
method. The simple duplication
method cuts the syllable at the
vowel (nucleus) and duplicates
the vowel to the multiple notes. The remaining part of the syllable is mapped to
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the last note of the syllable. This results in the first mapping shown in Figure 2.23.
The disadvantage of this method is that for diphthongs it simple copies them, which
is not what happens in singing, so that we have a repetition of diphthongs (ay ay in
this example). In rules based duplication a set of rules shown in Table 2.1 is used for
diphthong such that the diphthong ay from our example is duplicated as aa ay (aa
being a long a).

2.6.5 Vocoding

Different vocoding methods have been proposed for HMM-based synthesis. The vocoder
is used to synthesize a speech signal from the parameters generated from the model.
In the analysis part the vocoder is used to parametrize the speech signals, which are
then used for training.

[45] presents an evaluation of different vocoders for singing synthesis. These vocoders
can also be used in an HMM-based system. They evaluate the vocoders on a copy-
synthesis task where a speech signal is analyzed and immediately re-synthesized using
the vocoder. In this case the vocoder is seen as a speech coder and the effect of the
codec can be measured.

They differentiate between different vocoder types and instantiations of these types
where the ones in bold are evaluated in their study (Vocoder classification taken
from [45]).

• Source-filter with residual modeling:

– Pulse vocoder [46]

– Deterministic plus Stochastic Model (DSM) [47]

– Closed-Loop Training

– Mixed Excitation

– STRAIGHT

• Sinusoids+noise models:

– Harmonic plus Noise Model (HNM) [48]

– Harmonic/Stochastic Model (HSM)

– Sinusoidal Parametrization

• Glottal modeling:

– GlottHMM [49]

– Glottal Post-filtering

– Glottal Spectral Separation
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sinsy::IConf

sinsy::ConfGroup sinsy::GConf sinsy::JConf sinsy::UnknownConf

Figure 2.24: Inheritance diagram for sinsy::IConf

– Separation of Vocal-tract and Liljencrants-Fant model plus Noise (SVLN)

The pulse vocoder uses a simple source-filter model where excitation is modeled
as Dirac pulse for voiced signals and white noise for unvoiced signals. The filter uses
MGC coefficients [46]. This is the type of vocoder that we also use in our experiment
in Chapter 3 since it is part of the SINSY [3] system and it is open-source.

The study in [45] showed that high F0 values create problems for all types of vocoders
such that perceptual preferences are statistically insignificant for singing voices. This
suggests that all vocoders need to be improved for singing synthesis.

2.6.6 HMM-based SINging voice SYnthesis system (SINSY)

The work in this thesis is based on SINSY version 0.90 released on 25 December,
2013. At the same time also a Japanese HTS voice version 0.90 was released, which
is the basis for our voice development. The architecture of the system is shown in
Figure 2.21. As input the system accepts MusicXML. Supported musical symbols are
tie, slur, staccato, accent, dynamics, crescendo, decrescendo, and breath mark.

SINSY is written in C++. The handling of different languages is done by extending
the sinsy::IConf class. Figure 2.24 shows the inheritance diagram for the IConf class.
sinsy::JConf handles the conversion of Japanese MusicXML data. sinsy::GConf was
added by us to support the conversion of German data. It will be described in more
detail in Chapter 3. Appendix A shows the context dependent label format used in
SINSY.

The HTS singing voice version 0.90 was released to support the development of new
voices for SINSY. It contains labels, clustering question, and wav files for Japanese as
well as scripts for feature extraction and training. The training process uses Makefiles.
Appendix A shows the list of features that are used for clustering.

The feature extraction consists of the following steps:

1. Extracting Mel Generalized Cepstral Coefficients (MGC) or MGC-Line Spectral
Pair (LSP) coefficients from raw audio

2. Extracting log F0 sequence from raw audio

3. Composing training data files from MGC and log F0 files
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4. Generating monophone and full-context Master Label File (MLF)

5. Generating a full context model list file

6. Generating a trainig data script

The training process for a singing voice consists of ≈ 30 steps where there are sev-
eral loops of embedded estimation (reestimation), which was explained in Section 2.1
and context clustering (explained in Subsection 2.3.2) followed by synthesis steps (ex-
plained in Subsection 2.3.4) with different models. The models also include estimation
of global variance [50] and estimation of semi-tied covariance matrices [51].

2.7 Musical Instrument Digital Interface (MIDI)

MIDI (short for Musical Instrument Digital Interface) is a technical stan-
dard that describes a protocol, digital interface and connectors and allows
a wide variety of electronic musical instruments, computers and other re-
lated devices to connect and communicate with one another. A single MIDI
link can carry up to sixteen channels of information, each of which can be
routed to a separate device.

MIDI carries event messages that specify notation, pitch and velocity, con-
trol signals for parameters such as volume, vibrato, audio panning, cues,
and clock signals that set and synchronize tempo between multiple devices.
These messages are sent to other devices where they control sound gener-
ation and other features. This data can also be recorded into a hardware
or software device called a sequencer, which can be used to edit the data
and to play it back at a later time [52].

The MIDI format offers a compression of the musical data and can be used for
aligning musical scores with audio data. In our work we translate the MusicXML
files into MIDI format, which contains concrete timing information. The MIDI format
from the MATLAB [53] Midi Toolbox [54] that we are using contains the following
information for each note: onset (in beats), duration (in beats), MIDI channel, MIDI
pitch, velocity, onset (in seconds), and duration (in seconds). In the case of the
singing voice part the notes are not overlapping. The MIDI notes generated from
the transcription can then be aligned to a real musical performance using dynamic
programming, which can help us in the alignment of our data.

2.8 Alignment of MIDI data and audio

For alignment of MIDI files and recordings we used a method presented in [55]. We
use a MATLAB implementation that can be found on [56]. For the alignment the
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2.8 Alignment of MIDI data and audio

Figure 2.25: Masking of MIDI file (top). DTW alignment (bottom) (Figure from [56]).

spectrum of the MIDI file is masked to find the cells that contain the most energy,
which is shown in Figure 2.25 at the top. Then DTW is used to align the masked
spectrum of the MIDI file with the spectrum of the audio file, which is shown in
Figure 2.25 at the bottom. By knowing the borders of notes from the MIDI file we
can find the borders of the notes in the original recording using the alignment. In this
way we get a transcription of the original audio. We can also create a new MIDI file
with the note durations from the original audio file.

Algorithm 2 shows the basic dynamic time warping algorithm. DTW is also the
simplest speech recognition method that uses dynamic programming to compare a
reference speech sequence with the speech sequence that one wants to recognize (tem-
plate matching). It was used for early speech recognition on mobile phones. For
recognition on has to record reference utterances that are then matched against newly
recorded utterances. The advantage of the method is that it is language and speaker
independent, one algorithm works for all languages and all speakers, and that no
acoustic model and no language model is needed.

The D[i, j] holds the cost matrix, which is computed for all i, j pairs. In heuristic
versions of the algorithm the computation of te cost can be restricted to a band
along the diagonal. First the cost matrix is initialized. Then we have two for loops
computing the cost for the remaining cells. In our case the cost function cost(s[i], t[j])
is the spectral difference between MIDI and audio at point i, j.
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2 State-of-the-art

Algorithm 2 DTW algorithm returning the distance between a source s[1, ..., n] and
target sequence t[1, ...,m] (D[0..n, 0..m]).

1: for i← 1, n do
2: D[i, 0] =∞
3: end for
4: for i← 1,m do
5: D[0, i] =∞
6: end for
7: D[0, 0] = 0
8: for i← 1, n do
9: for j ← 1,m do

10: D[i, j] = cost(s[i], t[j]) + min(D[i− 1, j], D[i, j − 1], D[i− 1, j − 1]))
11: end for
12: end for
13: return D[n,m]

1 j-1 j m

i

n
...

...

... ...

1

s[]

t[]

i-1
D[i-1,j-1]

D[i,j]D[i,j-1]

D[i-1,j]

Figure 2.26: Different pattern for computing the cost in DTW.

Figure 2.26 shows different cost patterns that can be used in DTW. In the imple-
mentation that we are using the basic pattern at the left is used. For computing D[i, j]
we add the cost between s[i] and t[j], cost(s[i], t[j]) and the minimum of D[i, j − 1],
D[i− 1, j], and D[i− 1, j − 1]. Other patterns shown in Figure 2.26 on the right can
be used to cover longer distance dependencies between the compared sequences. At
the end the DTW algorithm shown in Algorithm 2 returns the total cost between the
two sequences, which is found at D[n,m]. This cost can be used for the recognition
task.

For alignment we need to find the path of the lowest cost called the warping path.
An example alignment is shown in Table 2.2 to demonstrate this. We see a two
sequences s of length 10 and t of length 7 that are to be aligned. The elements of s
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2.8 Alignment of MIDI data and audio

Table 2.2: Example DTW alignment between two sequences.

s[10] 2 ∞ 16 17 8 7 12 9 10
s[9] 4 ∞ 12 13 6 6 9 11 13
s[8] 3 ∞ 10 10 6 5 10 10 11
s[7] 5 ∞ 7 6 5 7 9 9 13
s[6] 8 ∞ 6 4 7 11 6 12 17
s[5] 7 ∞ 4 3 6 8 6 10 15
s[4] 6 ∞ 3 4 4 5 5 9 14
s[3] 4 ∞ 3 4 2 3 7 9 12
s[2] 5 ∞ 1 2 2 4 7 10 14
s[1] 6 ∞ 0 1 3 6 8 12 17

0 ∞ ∞ ∞ ∞ ∞ ∞ ∞
6 7 4 3 8 2 1

t[1] t[2] t[3] t[4] t[5] t[6] t[7]

can be found on the second column (e.g. s[3] = 4), the elements of t on the row before
the last row. As a cost function we use the Euclidean distance between the elements,
i.e. cost(s[3], t[5]) = cost(4, 8) = 4. Using this cost function we compute all elements
of the cost matrix D[i, j], which are shown in Table 2.2. After this we can find the
warping path by backtracking from the last element D[n,m], which is D[10, 7] in our
case by always looking for the minimal cost cell in the comparison pattern D[i, j − 1],
D[i− 1, j], and D[i− 1, j − 1]. This minimal element is then the next element in the
warping path. It can happen that there are multiple minimal elements. In that case
we can take one of the minimal elements.
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3 A Hidden-Markov-Model (HMM) based opera singing
synthesis system for German

In this chapter we will describe how we extended an existing Japanese singing synthesis
system [3] for the German language. Our German singing synthesis system is compa-
rable with the current state-of-the-art for English [44] and is able to create German
full context labels with German features like stress and word boundaries, duplicate
syllables to deal with slur as described in Subsection 2.6.4, and do utterance chunking
of MusicXML files.

The opera data was recorded in Vienna in a project funded by the National Institute
of Informatics (NII), Japan [57]. In this project we recorded the four main singer types
(mezzo, soprano, tenor, and bass). We will also describe the recording process and
methods.

Furthermore we will also describe the development pipeline for creating an opera
singing voice for that system. Here we will describe specific alignment and training
scripts for acoustic models of opera singing that we developed.

3.1 Recording

The opera data was recorded in Vienna in a project funded by the National Institute
of Informatics (NII), Japan [57]. In this project we recorded the four main singer types
(mezzo, soprano, tenor, and bass).

3.1.1 Singer and song selection

For the recordings we consulted a professional opera singing teacher that did the
concrete selection of songs and singers. Differently to speech recordings the selection
of songs and singers for opera synthesis is tightly coupled. In standard speech synthesis
we would select a corpus with an optimal phone coverage by finding an approximate
solution for the associated minimum set-cover problem [15]. For the solution of this
problem we can take different features like diphones, diphones in stressed syllables
and so on into account [58]. For finding this corpus we need a large phonetically
transcribed background corpus. This corpus would then be read by a speaker that is
selected in a separate selection process.

For selecting an opera corpus we could go the same way, provided that we have a
large amount of opera songs in MusicXML format. But with such a selection process
we would end up with a selection of opera songs that no available opera singer has
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Figure 3.1: Classification of opera songs according to lyrical - dramatical and slow - fast dimension.

in his/her repertoire at the moment. So the selection of singers and songs has to go
hand in hand by using a different strategy.

Therefore we decided to select a number of opera songs (≈ 8-10) for each singer
category that are in the repertoire of that singer at the moment and that cover the
space of opera songs along the lyrical - dramatic and slow - fast axis. We also checked
that these songs cover the F0 range of that singer category.

Figure 3.1 shows the classification of opera songs along the two dimensions lyrical -
dramatic and slow - fast. The classification of opera songs was done by a professional
opera singing teacher. As can be seen in Figure 3.1 the opera songs that were then
recorded cover the whole space for mezzo and bass but the slow and dramatic category
is in general difficult to find and especially difficult for the soprano and tenor voice.
This of course also shows that the two dimensions are not completely independent of
each other. A further restriction in the selection of songs was the fact that we were
only looking at songs in the German language.

Figure 3.2 shows the F0 range for the mezzo voice with bold numbers on the piano
roll ranging from A3 with 220 Hz to A5 with 880 Hz. The colored bars show the F0
ranges for our 8 selected opera songs. Song 1 for example has a range from B3 (=246
Hz) to G5 (=783 Hz). We can see from Figure 3.2 that our songs cover the F0 range
almost completely with the exception of one note, the highest note with 880 Hz, which
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iecesFigure 3.2: F0 range for mezzo and opera songs shown on the piano roll.

is not existent in the training data.

3.1.2 Phonetically balanced singing corpus

Additionally to the coverage of the features F0, lyric - dramatic, and slow - fast
we were also thinking about how to achieve a good phonetic coverage. In speech
synthesis phonetic coverage is achieved by transforming a large text corpus into phone
sequences and then selecting those sentences from the corpus that achieve the best
phonetic coverage in terms of number of diphones or other contextual factors. This is
a set-cover problem [15].

In the opera singing context this could not be done since we did not have a large
MusicXML corpus to select from, and we also had to consider the constraint of the
repertoire of our singers. To still achieve phonetic coverage we recorded a sung ver-
sion of an existing German phonetically balanced corpus. This corpus consists of
approximately 200 sentences.

Each singer had to improvise a melody for a certain sentence together with the piano
player. Then they performed the sentence together. These sentences were however
not used in the modeling and experiments described in Chapter 3-4. For using them
we would need to derive the MusicXML transcription from the audio. This is possible
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3 A Hidden-Markov-Model (HMM) based opera singing synthesis system for German

in principle, but is an error prone task that needs manual correction. It adds an
additional layer of complexity to the already difficult task of opera synthesis. If this
corpus is however once transcribed in MusicXML there is no problem to include it in
the training data.

3.2 Implementation of a German frontend for Sinsy

The main extensions to the SINSY system for German were

• analysis of the German input text (text analysis),

• conversion of the input words into phonetic sequences (lexicon and letter-to-
sound conversion)

• duplication of syllables where syllables had more than one note (syllable dupli-
cation)

3.2.1 Text analysis

In TTS systems the task of text analysis consists of the conversion of numbers, dates
etc. into a form that is close to written words (123 → hunderteinundzwanzig). In
parsing the data from the MusicXML file the task of text analysis consists in the
reconstruction of words that can then be used to access the lexicon. The <begin>,
<middle>, and <end> tag inside the MusicXML <lyric> tag are used to mark the
specific syllables of the word. The <single> tag marks a word with just one syllable.

3.2.2 Lexicon and letter-to-sound conversion

We integrate a lexicon and rules for Letter To Sound (LTS) conversion from an open-
source synthetic voice for Austrian German that was developed at Telecommunications
Research Center Vienna (FTW) [59]. The LTS rules consist of a set of decision trees,
one tree for each letter, that are used to convert a given input character sequence (word,
syllable) into the corresponding output phones as described in Subsection 2.2.4.

Since we are getting a sequence of syllables from the MusicXML files we are using
these syllables directly for LTS conversion. For each syllable we are using the decision
trees for predicting the corresponding phone sequence. The other approach would
be to put syllables together into words, apply LTS conversion to words and split
the resulting phone sequence again into syllables. By skipping the syllabification
step, where a sequence of letters is broken up into syllables we achieve a more robust
prediction. Furthermore there are sometimes MusicXML files where the annotation is
wrong, such that merging syllables into words leads to wrong or non-existing words.
With our method that starts directly from syllables, we can also alleviate this problem.
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3.2 Implementation of a German frontend for Sinsy

Figure 3.3: Alignment of MIDI and phone labels on utterance level for the utterance
“Wenn mein Schatz Hochzeit macht”.

Through the integration of LTS rules into the system we are able to synthesize from
any German MusicXML file.

3.2.3 Syllable duplication

Syllable duplication that was already described in Subsection 2.6.4 was not imple-
mented in the open-source SINSY system, so we had to do this for German. Figure 3.3
shows an example alignment for the sentence “Wenn mein Schatz Hochzeit macht”,
phonetically “v E n . m aI n . S a t z . h oh ch t s aI t . m a ch t” where ’.’ signifies
word boundaries here. The alignment also contains the silence symbol “sil” at the
beginning and end of the utterance.

At the top we can see the spectrogram of the respective audio signal as well as
the F0/pitch curve in Hz. Below we have the phonetic transcription aligned and the
musical notes aligned. We see that the notes start with A4, which has 440 Hz. The
F0 curve shows that this target is reached with vibrato around 440 Hz.

The transcription shown here is already after text analysis and letter-to-sound con-
version. We can see that the word “wenn” (“v E n”) is distributed across two notes
A4 and G4 such that the syllable duplication turns it into “v E E n” phonetically.
The word “mein” (“m aI n”) is also distributed across two notes F4 and G4. Through
syllable duplication it is turned into “m ah aI n” where we take into account that
we do not duplicate diphthongs like “aI”. The syllable duplication algorithm takes the
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MusicXML file as input and transform it into a phone sequence as shown in Figure 2.23.

<note>

<pitch>

<step>F</step>

<octave>4</octave>

</pitch>

...

<notations>

<slur number=”1” type=”start” />

</notations>

<lyric number=”1”>

<syllabic>single</syllabic>

<text>mein</text>

</lyric>

</note>

<note>

<pitch>

<step>G</step>

<octave>4</octave>

</pitch>

...

<notations>

<slur number=”1” type=”stop” />

</notations>

</note>

The above MusicXML example shows how the <slur> tag is used to define that a
certain word spans multiple notes. In this case the word “mein” spans A4 and G4.
Using this file and the phonetic transcription of the word we have to distribute the
phonetic syllables to the notes.

For the duplication of syllables with diphthongs we use the duplication rules shown
in Table 3.1. When duplicating an “aI” n times for example, we generate n− 1 times
an “ah” (a long “a”) followed by one “aI”. Prefix and postfix are used from the original

46



3.2 Implementation of a German frontend for Sinsy

Table 3.1: German diphthong duplication rules.

Original aI aU E6 Eh6 ih6 O6 OY Y6

Duplicated ah, aI ah, aU E, E6 E, Eh6 ih, ih6 O, O6 O, OY Y, Y6

syllable. Our notation is closely related to the Speech Assessment Methods Phonetic
Alphabet (SAMPA) standard [60].

Algorithm 3 shows the algorithm for syllable duplication. After preprocessing we
have inserted pause symbols “pau” at the phones inside of slurs. For the example of
the word “mein” mentioned above the sequence after preprocessing is “m aI pau n”.
The algorithm now goes through all syllables and phones within a slur (slur begin to
slur end). The first vowel is replaced if it is a diphthong, so the sequence is “m ah
pau n” after this step. If we are at the last pause in the slur, which we can check be
checking if we are at the last note, we replace the pause by the respective diphthong.
This leaves us with the final sequence “m ah aI n”, which is the desired result.

Algorithm 3 Algorithm for duplicating syllables.

Check that slur does not span across words
for note ← slur begin, slur end do

for syl ← syl begin, syl end do
for phone ← phone begin, phone end do

if phone is the first vowel found then
Replace phone if it is a diphthong

else
if phone is a pause after vowel was found then

if we are not at the last pause in the slur then
Replace pause by respective phone

else
Replace pause by diphthong or respective phone

end if
end if

end if
if last note and last syllable in slur then

Add remaining phones
end if

end for
end for

end for

At the beginning the algorithm also checks if the slur does not span across words.
In this case we cannot do syllable duplication with our algorithm. The algorithm does
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of course also work is we have more than two notes that are to be distributed across
a syllable. If we have to sing “m aI n” with four different notes, the conversion would
be from “m aI pau pau pau n” to “m ah ah ah aI n”.

3.3 Alignment

3.3.1 Conversion between notes, midi notes, and frequencies

For the alignment of MIDI, waveforms, and labels we need to be able to convert be-
tween different symbolic representations, which requires the conversion between notes,
MIDI notes and frequencies. MIDI notes are named from 0 to 127 (60=C4, 61=C#4,
62=D4,...,69=A4=440Hz). An octave contains 12 semitones.

Algorithm 4 Algorithm for creating a mapping between notes and MIDI notes.

notes = “C DbD EbE F GbG AbA BbB ”
for notenum ← 0, 127 do

octave = notenum 12 - 1
note = notes[(notenum % 12) * 2:(notenum % 12) * 2 + 2]
notename = note+str(octave)
notename = notename.replace(“ ”,“ ”)
note midi map[notename] = notenum

end for

Algorithm 4 converts MIDI notes in “notenum” into the respective notes. The
general formula for computing the frequency from the MIDI notes is given as

fn = f0 ∗ an (3.1)

where f0 is a fixed frequency of a given note, which is in our case fixed to A4=440
Hz, which has the MIDI number 69. n is the number of semitones you are away from
the fixed note, which is either positive or negative. a = 2

1
12 = 1.059463094359....

Algorithm 5 Function for computing the frequency from MIDI notes.

function midinote to frequency(midinote)
notediff = midinote - 69
freq = 440 ∗ 1.059463094359notediff

return freq
end function
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Table 3.2: Alignment methods for aligning original recordings withMIDI files.

p sp Piano MIDI aligned with Singing+Piano original
p p Piano MIDI aligned with Piano original
p s Piano MIDI aligned with Singing original
s sp Singing MIDI aligned with Singing+Piano original
s p Singing MIDI aligned with Piano original
s s Singing MIDI aligned with Singing original

sp sp Singing+Piano MIDI aligned with Singing+Piano original
sp p Singing+Piano MIDI aligned with Piano original
sp s Singing+Piano MIDI aligned with Singing original

3.3.2 Aligning waveforms and midi data

For aligning waveforms and midi data we use the algorithm implemented in [56] that
was already described in Section 2.8. For the alignment we generate a MIDI file from
the MusicXML file using MuseScore [32], which is then aligned with the original audio
recording.

We are interested in an alignment of the opera singing, i.e. finding the borders of
notes in the audio signal. For this alignment we can use different MIDI data coming
from the piano notes, the singing notes, or both. In terms of the audio signal that we
want to align, we can align the singing audio or the audio that contains singing and
piano performance. Table 3.2 shows all possible alignment methods where we are only
interested in methods having “s” or “sp” at the right side. These methods provide an
alignment of the singing signal.

Figure 3.4 shows the performance of the different alignment methods on a whole
mezzo song. We can see that there is some disagreement between the alignment
methods. For our alignment on the utterance level we are using the “s s” method,
since we have only MusicXML transcriptions of the singing part for some of the mezzo
songs and have seen a similar alignment performance of “s s” and “s sp” which would
be our two options. A formal evaluation of different alignment methods would be very
interesting but is beyond the scope of this thesis.

3.3.3 Splitting opera recordings into utterances

Whole opera songs are split into smaller utterance chunks to make the alignment more
robust and acoustic feature extraction computationally less complex. The waveforms
are cut manually into utterances and MusicXML files are annotated with “uttbegin”
and “uttend” labels.

The MusicXML files are then split into utterance level files where we have to make
the following adjustments:
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Alignment for Mezzo song1
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Figure 3.4: Alignment of original mezzo Song #1 with MIDI song.

• Introduce <rest> before the first syllable, and after the last syllable.

• Remove syllables that don’t belong to the utterance.

• Introduce the correct attributes at the beginning of the utterance MusicXML
file.

The attributes in the MusicXML files define the tempo and beat information as well
as the key of the notes.

<attributes>

<divisions>24</divisions>

<key>

<fifths>-3</fifths>

<mode>minor</mode>

</key>

<time>

<beats>3</beats>

<beat-type>4</beat-type>
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3.4 Training of acoustic models

</time>

</attributes>

3.3.4 Alignment of singing speech and labels

Using the German frontend for SINSY that was described in Section 3.2 we can trans-
form utterance MusicXML files into full context label files that can be used for HMM
training. The format of full context labels is described in Appendix A. The context
contains phonetic and linguistic information as well as information on the current,
previous and following notes.

Using the program Musescore [32] we can also create MIDI files from the utterance
MusicXML files. These MIDI files are then aligned with the original opera singing
waveforms using the method described in Section 2.8.

These aligned MIDI files are then used to set note durations in the full context label
files. The durations within are set uniformly. If we have for example the note A4 with
duration 0.3 seconds for the syllable “b e r” we set the duration for each phoneme to
0.1 seconds.

This alignment provides us with a first rough alignment of the data at the level of
notes and uniform alignment at the level of phones that is then manually corrected for
the mezzo voice to have correct alignments at the phone level as shown in Figure 3.4.
We use this alignment also for the evaluation of the mezzo voice. Fully automatic
alignment with monophone HMMs is done for the voices that are only used in training
and are not used in the evaluation (soprano, tenor, bass).

3.4 Training of acoustic models

3.4.1 Data

For training the mezzo voices we had 8 different opera songs. After splitting the
recordings into utterances we had 154 different utterances. 8 utterances were taken
as test sentences and were not used for training. As shown in Table 3.3 we had songs
from five different composers with a total duration of 25.8 minutes.

3.4.2 Training

For training acoustic models for opera singing we adapted an existing training script
for Japanese acoustic model training [61] that was released in December 2014. The
model training follows the speaker dependent singing synthesis system as shown in
Figure 2.21.

To adapt the training script for German we had to generate clustering questions
for German. Using the clustering questions from a speech synthesis training script for
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Table 3.3: Songs recorded for the mezzo voice. The table also shows the maximum and minimum
F0 according to the MusicXML file.

Song Composer Singer Dur. (sec.) Max. F0 Min. F0

Wenn mein Schatz G. Mahler Mezzo 214 246 783
Hochzeit macht

Ging heut abend G. Mahler Mezzo 235 220 783
übers Feld

Ich hab ein glühend G. Mahler Mezzo 201 246 783
Messer

Die zwei G. Mahler Mezzo 318 220 783
blauen Augen

Sagt, holde Frauen Mozart Mezzo 170 261 698

Ich wünsche dir Glück Korngold Mezzo 142 220 698

Sandmanns Arie Humperdinck Mezzo 140 261 879

Laue Sommernacht A. Mahler Mezzo 128 246 698

8 5 1 1.548
25.8 min.

German [59] and adopting it to the Japanese singing training script we generated a
training script.

Figure 3.5 shows a part of the decision tree for the log F0 for the center state of the
HMM. This part shows the decision tree for the O-vowels were the first two questions
are if the current phone is a vowel and if the current phone is an O-vowel. We can see
that the F0 for O-vowels is clustered according to the current note and some linguistic
features. The data dependency of this approach is a weakness here in case that we
have to generate an F0 that was not present in the training data. However, we are
able to cover some livelyness of the F0 variation as compared to the approach were we
simply take the fixed notes as F0 values. The tree also shows that we can only model
14 different notes for the O-vowels, while there are 24 notes in the mezzo range which
can be seen from Figure 3.2 and Table 3.3. Our modeling of the O-vowels only covers
58% of the notes, which is a problem with this data dependent modeling.

Figure 3.6 shows part of the decision tree for the spectral models of vowels where
the current phones absolute scale is smaller than C5. We can see that in this decision
tree more linguistic phonetic classes are used, although still not all vowels are covered,
which also relates to the rather small amount of training data.

Figure 3.7 shows a part of the decision tree for duration modeling for vowels that
have a duration of less than 40 centiseconds (10−2 seconds). This decision tree also
shows a mix of linguistic and score related features, where duration features are located
at the top nodes of the tree. The first question leading to this subtree is if the current
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3.4 Training of acoustic models

Figure 3.5: Part of the decision tree for log F0 models for the center state (4th state of 7-state) of
the HMM.

phone is a vowel, the second question is if the note has duration of less than 40
centiseconds (10−2 seconds).

The training script [61] allows for the modification of different parameters. In our
experiments we tried spectral estimation with two different FFT lengths 2048 and
4096. A longer FFT analysis window increases spectral resolution and decreases time
resolution.

Furthermore we added the F0 extraction method YIN [62] to the training script
by using the Matlab implementation from [63]. The name YIN refers to the “yin
and yang” since the algorithm uses autocorrelation and cancellation. The Robust
Algorithm for Pitch Tracking (RAPT) [64] F0 extraction method that is part of the
script and implemented in the Signal Processing ToolKit (SPTK) [65] was also used.

For F0 extraction we determined the maximal F0 value by extracting it from the
corresponding MusicXML file. This constraining of the extraction improves the per-
formance of the F0 extraction significantly.

We also implemented F0 shifting as described in Subsection 2.6.2. For F0 shifting
we use Sox [66] to increase or decrease the fundamental frequency of an opera singing
utterance by one semitone. We also shift the notes in the full context label files by one
semitone up or down. In this way we are able to triple the size of the training corpus.
The models that are trained with this modified script can be used with our German
version of the SINSY singing synthesis system.

For the adaptation of the training script we did the following:

• Creation of clustering questions for German.
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Figure 3.6: Part of the decision tree for spectral models for the center state (4th state of 7-state) of
the HMM.

• Extend scripts for YIN F0 extraction.

• Develop scripts for F0 extraction from MusicXML files.

• Develop scripts for F0 shifting, shifting waveform and label files.

3.4.3 F0 extraction methods

For our experiments we used two different F0 extraction methods. The maximum
and minimum F0 values of the signal to be analyzed could be determined from the
corresponding MusicXML trancription, which contains the notes that are to be sung.
We took these F0 estimates added 6 semitones to the maximum and subtracted 6
semitones from the minimum and used these parameters for the extraction algorithms.
We found that using the minimum F0 decreased the quality of the extractor. Therefore
we used the minimum predefined value in SINSY which is 195 and only used the
maximum value from the MusicXML file.
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3.4 Training of acoustic models

Figure 3.7: Part of the decision tree for duration models for the center state (4th state of 7-state)
of the HMM.

Robust Algorithm for Pitch Tracking (RAPT)

[64] gives an overview of F0 extraction methods and also describes the RAPT al-
gorithm. These extraction methods are also often called pitch extraction methods,
although the term “pitch” refers to the perceived tone that strongly correlates with
F0 but is a “nonlinear function of the signal’s spectral and temporal energy distribu-
tion” ([64],p.497). The pitch of a complex sound can be measured by letting listeners
find the sinusoid with the same tone. According to [64] F0 extraction methods often
perform three steps:

1. Pre-processing (Low-pass filtering etc.).

2. Extraction of F0 candidates for frames.

3. Selection of best F0 candidate for each frame.

The RAPT algorithm does not use any pre-processing. F0 candidates are extracted
by defining an F0 range and using the normalized cross-correlation function, which is
defined as

Φi,k =

∑m+n−1
j=m sjsj+k√
emem+k

k = 0, ...,K − 1,m = iz, i = 0, ...,M − 1 (3.2)

where ej is defined as

ej =

j+n−1∑
l=j

sl (3.3)
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and i is the frame index for M frames, k is the lag index, and z = t/T with T = 1/Fs.
n = w/T , and W is twice the longest expected glottal period. The signal s is assumed
to be zero outside the window w. Values of k where Φi,k are close to 1.0 are candidates
for the F0 of frame i.

In the RAPT algorithm Φi,k is first computed for a speech signal at reduced sampling
rate to reduce computational cost. Then Φi,k is computed again on the signal with
original sampling rate in the neighborhood of the best estimates from the first step.
Then dynamic programming is used to select the best F0 and voicing state candidates,
where each frame is either marked as voiced or unvoiced, where unvoiced frames have
by definition no F0.

YIN F0 extraction

The YIN F0 extraction method [62] is also based on the cross-correlation function
defined in Equation 3.2 with a number of modifications to prevent errors that are
commonly made by the cross-correlation method.

3.5 Voice development pipeline

Figure 3.8 shows a system diagram for the voice development. Each block receives
data with certain input format shown on the lines entering the block and produces
data in a certain output format. The formats are waveforms (WAV), MusicXML files,
MIDI files, and full context and monophone label files (LAB) in SINSY format. The
full context label format is described in Appendix A, the monophone labels contain
the phone symbol and start and end time of the respective phone. Blocks in red do
require manual intervention, the red block with dashed lines is optional.

After the recording process (Step 1) we have WAV [67] and MusicXML files of the
opera songs. Then we have to set markers for begin and end of utterances in WAV
and MusicXML files (Step 2), which is done with Audacity[68] and Musescore [32].

After that we can automatically cut the WAV and MusicXML files into utterance
chunks (Step 3). Cutting the data fully automatically would be possible by using the
MIDI alignment method from Step 6, but we choose the manual procedure to avoid
any errors at this stage. Cutting the WAV data is done with Audacity, cutting the
MusicXML is done with a Python [69] script that we’ve developed.

Then we can generate full context and monophone label files for the utterances from
the MusicXML files using our German implementation of the SINSY [3] system. The
generation of full context and monophone label files is done with the German SINSY
system.

Using the MIDI files generated from the MusicXML files (Step 5) we can align the
MIDI with the original recordings (Step 6) to get note duration information for our
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3.5 Voice development pipeline

recorded data. The MIDI generation is done with Musescore, the MIDI and WAV
alignment is done with a Matlab script [54].

Using the aligned MIDI data and the generated label files we can generate new label
files that include the time alignment information (Step 7). For the alignment of MIDI
and label files we have developed a Python script.

Now we can optionally manually correct these alignments (Step 8) as done for the
mezzo voice or do automatic alignment using monophone models (Step 9) as done for
the soprano, tenor, and bass voices and start the training (Step 10) or directly start
training with the MIDI aligned labels. The manual correction can be done with the
Praat [70] software package.

For the training process we only need the original utterance WAV files and the label
files. Furthermore we need the questions for clustering, which were derived from the
original SINSY script and our Austria German voice [59].

The whole training and synthesis process described in this chapter is done with
open-source of freely available software packages and software developed during the
work on this thesis.
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Figure 3.8: Voice development pipeline.
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4 Evaluation

4.1 Different mezzo voices for evaluation

Table 4.1: Different parameters for the evaluation used in training.

Parameter Values

FFT length 2048, 4096
F0 method RAPT, YIN
F0 shifting yes, no
Training data alignment automatic, semi-automatic

Table 4.2: Different parameters for the evaluation used in synthesis.

Parameter Values

Durations SINSY prediction, MIDI prediction, original

Table 4.1 shows the different parameter combinations that we used in the evaluation
for training different voices. We want to evaluate the influence of FFT length, F0
extraction method, F0 shifting and training data alignment on model training.

For training data alignment we used the automatically aligned labels from the MIDI
alignment method as described in Section 3.3 as well as a set of labels where these
automatically aligned labels were manually corrected, which we therefore call semi-
automatically aligned labels.

By combining all possible parameters we have 16 different trained voices used in the
evaluation.

Table 4.1 shows the different parameter combinations that we used in the evaluation
for synthesizing. Durations for synthesis were taken from the SINSY prediction, the
MIDI prediction or the original label files.

By using these 3 different synthesis labels and 16 different voices we get 48 versions
for each test sentence. Each of these 48 synthetic versions of a test sentence is compared
with the original recording using an objective error metric. Since we have 8 different
test sentences (that were not part of training) we get 480 different synthetic singing
samples.
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4.2 Objective evaluation metric

As error metric between two waveforms we use Mel Cepstral Distortion (MCD) [71, 65],
which is defined as follows

MCD(cepi − cepj) =
10

ln(10)

√√√√2
1

N

N∑
k=1

(cepi(k)− cepj(k))2 (4.1)

where cepi and cepj are two sequences of cepstral parameters of length N .
This metric gives us the Mean Squared Error (MSE) of the cepstral parameters in

Decibel (dB). To compute a distance between two waveforms we convert the waveforms
into sequences of cepstral parameters, which are then time aligned using Dynamic Time
Warping (DTW) and then compared using MCD. The time alignment is necessary
since original and synthesized waveforms have different lengths for the synthesis based
on SINSY prediction and MIDI prediction.

For the time alignment of feature sequences A (original) and B (synthesized) we
compute the DTW path between the sequences as described in Section 2.8 which is a
list of indices (i, j) of elements of A and B. To generate a sequence of elements of B
with the same length of A we select the first element in B to which an element in A
is mapped minj(i, j).

4.3 Results of objective evaluation
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Figure 4.1: Cepstral distortion per sentence (left), normalized cepstral distortion for FFT length
(right).
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4.3 Results of objective evaluation

Figure 4.1 (left) shows the cepstral distortion for the 8 test sentences per sentence.
We can see that there is one sentence that is particularly different from the respective
original opera recording. Since we are only interested in differences between different
methods, we normalized the cepstral distortion for all following comparisons.

Figure 4.1 (right) shows that there are no significant differences between train-
ing/synthesis method combinations when taking different FFT lengths (2048, 4096).
A longer FFT length increases the spectral resolution and decreases the time resolution
of the analysis.
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Figure 4.2: Normalized cepstral distortion for synthesis durations (left), normalized cepstral distor-
tion for F0 extraction method (right).

Figure 4.2 (left) shows the normalized cepstral distortion when using different dura-
tions during synthesis time. The durations can come from the original label files that
are generated through semi-automatic alignment, from the MIDI prediction where the
recorded opera signal is aligned with a MIDI file, or from SINSY prediction where our
German SINSY system is used to automatically generate full-context label files from
MusicXML files.

Figure 4.2 (left) shows that there are significant differences between the different
synthesis duration methods with p < 0.05 for the comparison between original and
MIDI durations and p < 0.001 for the other two comparisons according to a Wilcoxon
rank sum test. Not surprisingly we achieve the lowest error with the durations from
the original label files, followed by synthesizing from MIDI predicted durations, and
durations from SINSY prediction.

These significant differences show that the correct durations are essential for accu-
rate singing synthesis. It is clear that the liveliness or originality of opera singing is
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heavily influenced by the durations that a singer chooses for the different syllables. In
the context of HMM modeling the correct durations also have a strong impact on the
segmental quality and thereby the cepstral distance between original and synthesis.

Figure 4.2 (right) shows that there are weakly significant (p < 0.15) differences
between the two different used F0 extraction methods RAPT and YIN where the
RAPT method achieves a small improvement over the YIN method according to a
Wilcoxon rank sum test.
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Figure 4.3: Normalized cepstral distortion for F0 expansion (left), normalized cepstral distortion for
training data alignment method (right).

Figure 4.3 shows the results of the objective evaluation for the use of F0 expansion
(left), and different training data alignment method (right). In F0 expansion we
extend the training data corpus by additional data that is generated by increasing or
decreasing the recorded samples by one semitone. Thereby we can triple the size of
the training data. It shows however no significant differences in cepstral distortion.

Figure 4.4 shows the cepstral distortions for the different methods where a method
is a training/synthesis combination. We can see some small differences, but none of
them are significant.

Overall we can see that several modeling decisions have no influence on the objective
quality of the synthesized samples. This has two reasons. The first lies in the small
amount of data that we have available, and the second lies in the objective evaluation
itself, which is a coarse method to evaluate quality differences in synthesis, especially
when using only one scalar valued objective metric. Complex methods have been
investigated for objectively measuring synthesis quality [72] but today still subjective
methods are used [5] for evaluation of speech, although they are very time consuming.
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Figure 4.4: Normalized cepstral distortion for the 16 different methods (training/synthesis condition
combinations).

4.4 Subjective evaluation

For the subjective evaluation we had 12 listeners that had to listen to pairs of synthe-
sized samples and had to give a preference judgment on which sample they prefer in
terms of overall quality. We did not evaluate how correct the synthesized samples are
following the score.

For the subjective evaluation we only used 8 different methods out of the 16 methods
to reduce the number of evaluation pairs. We only used the training methods that are
using the semi-automatically aligned training labels. Table 4.3 shows the 8 different
methods that were used in the subjective evaluation.

Table 4.3: 8 methods used in the subjective evaluation.

Param. \ Method 1 2 3 4 5 6 7 8

FFT length 2048 4096 2048 4096 2048 4096 2048 4096
F0 method RAPT RAPT YIN YIN RAPT RAPT YIN YIN
F0 shifting no no no no yes yes yes yes

4.5 Results of subjective evaluation

Figure 4.5 shows the result of the subjective evaluation for different FFT length on
the left side. Here we only plot absolute values, which shows that the standard FFT
length of 2048 is slightly better than the 4096 FFT length. For this figure we simply
count how often a sample that was synthesized with one FFT length wins again a
sample of the same utterance with the other FFT length.
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Figure 4.5: Results of subjective experiments for different FFT length (left), and different synthesis
durations (right).

The right side of Figure 4.5 shows the result of the subjective evaluation for the
different synthesis durations. Here we plot how often a certain synthesis method
wins against the other methods for each train/synthesis combination. A Wilcoxon
rank sum test shows us that all differences between synthesis durations are significant
(p < 0.001). The oroginal recordings have the best performance with winning all
comparisons (rightmost bar). Using the original durations for synthesis is the second
best method (leftmost bar). The third best method is the method that uses duration
labels from the SINSY system, which are automatically predicted from MusicXML
files and is thereby a full synthesis method.

The worst performance is shown by the MIDI predicted labels. This is contradicting
the objective evaluation metric as shown in Figure 4.2 where the SINSY labels show the
worst performance. This can be explained by the fact that the DTW based measure
penalizes utterances with different duration stronger. Since the MIDI aligned labels
have the same duration as the original ones, they get a higher similarity.

Figure 4.6 shows subjective evaluation results for the two different F0 extraction
methods where we can see that the RAPT method has slightly more wins than the
YIN method. For F0 expansion it is better to not use the expansion/shifting method,
which contradicts results in the literature [40]. This can be due to the small amount
of training data.

Figure 4.7 shows the result for the different training methods that are described
in Table 4.3. Method 9 is the original recording. All methods are significantly dif-
ferent from the original recordings (Method 9) (p < 0.001) according to a Wilcoxon
rank sum test. Methods 1-3 and 5-6 are also significantly different from Method 7
(p < 0.05). Method 7 uses the YIN F0 extraction method in combination with F0
expansion/shifting.
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Figure 4.6: Results of subjective experiments for different F0 extraction method (left), and F0 ex-
pansion (right).
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Figure 4.7: Results of subjective experiments for different training methods.

4.6 Analysis

Here we want to analyze the best and worst example according to our objective evalu-
ation metric. The best utterance is synthesized with method 2 when using the original
label files. The worst synthesized utterance uses method 11 with the SINSY predicted
labels. The different parameter settings for the two methods are shown in Table 4.4.

Figure 4.8 shows the best synthesized utterance according to the MCD metric. We
can see that the F0 lies approximately in the same range as the original one. However,
we are missing the structure within the F0 such as the vibrato, which is not modeled
by the synthesizer. But in the synthesized example we can also see some F0 dynamics
that is modeling by the synthesizer, such that not only a flat F0 curve is generated.

We can also see that a lot of spectral detail is lost in the synthesized example
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Table 4.4: Two methods resulting in best and worst synthesis according to MCD.

Parameter Method 2 Method 11

FFT length 4096 2048
F0 method RAPT YIN
F0 shifting no no
Traingin data alignment semi-automatic automatic

compared to the original one. This is a result of the vocoding as well as of our limited
amount of training data.

Figure 4.9 shows the worst synthesized utterance according to the MCD metric.
Here we can see that the duration of the synthesized sample has a large mismatch
with the duration of the original one. For this synthesized sample we use the SINSY
duration prediction. We can again see the missing spectral detail. In this example the
synthesized F0 curve has a large deviation from the original one.
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Figure 4.8: Alignment of MIDI and phone labels on utterance level for the utterance
“Seh ich zwei blaue Augen stehn”. Original (top), synthesized (bottom).
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Figure 4.9: Alignment of MIDI and phone labels on utterance level for the utter-
ance “Sagt, holde Frauen die ihr sie kennt”. Original (top), synthesized
(bottom).
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5 Conclusion

We showed how to develop a Hidden Markov Model (HMM) based opera singing
synthesis system for German that is based on a Japanese singing synthesis system for
popular songs. The subjective evaluation of the mezzo voice showed that moderate
quality opera singing synthesis is feasible with the limited amount of training data at
hand and that correct duration modeling is the most influential quality parameter at
this stage.

The current system provides the basis for a future high quality system, and can
also be used as a front-end for a general German singing synthesis system. Before our
work such an HMM-based singing synthesis system was only available for Japanese
and English. Furthermore our models can be used for general singing processing tasks
like following the score of a singer on a phonetic level.
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6 Future work

To improve the modeling of opera synthesis in our parametric framework more train-
ing data is needed. To extend the amount of training data we can use a phonetically
balanced singing corpus, which contains all German phonemes or diphones. For pro-
cessing of this data, which is not musically annotated, a method needs to be developed
that allows for the automatic annotation of audio recordings with aligned phonetic,
linguistic, and musical information.

A further possibility is to apply adaptive modeling and to train a background model
with all speakers (mezzo, soprano, tenor, bass) or a subset of the speakers (mezzo,
soprano) and to adapt our target model from this background model. For training the
background model different clustering strategies can be used.

For a high quality opera singing synthesis systems we would also need to model the
vibrato, which can be done in the current framework by introducing a new data stream
that is separately clustered. Furthermore we need to improve the F0 extraction and
modeling in general as well as the synthesis of fine spectral detail. To capture specific
features of the so called singing formant a joint phonetic-musical score modeling could
be employed. This joint modeling is at the moment done by the spectral clustering
where musical and phonetic information is used.
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Jyväskylä, Finland: University of Jyväskylä, 2004.
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A Context dependent label format

This is the definition of the context-dependent label format used for training. Each
phone is described in this format. Table A.1 describes the different features, other
symbols are part of the syntax of the label format. The format is taken from the label
format for HMM-based singing voice synthesis released by the HTS Working Group
on December 25, 2013 [3].

p1@p2ˆp3-p4+p5=p6 p7%p8ˆp9 p10˜p11-p12!p13[p14$p15]p16
/A:a1-a2-a3@a4˜a5/B:b1 b2 b3@b4|b5/C:c1+c2+c3@c4&c5
/D:d1!d2#d3$d4%d5|d6&d7;d8-d9
/E:e1]e2ˆe3=e4˜e5!e6@e7#e8+e9]e10$e11|e12[e13&e14]e15=e16ˆe17˜e18#e19 e20
;e21$e22&e23%e24[e25|e26]e27-e28ˆe29+e30˜e31=e32@e33$e34!e35%e36#e37|
e38|e39-e40&e41&e42+e43[e44;e45]e46;e47˜e48˜e49ˆe50ˆe51@e52[e53#e54=e55!e56
˜e57+e58!e59ˆe60
/F:f1#f2#f3- f4$f5$f6+f7%f8;f9
/G:g1 g2/H:h1 h2/I:i1 i2
/J:j1˜j2@j3

p1 the language independent phoneme identity
p2 the phoneme identity before the previous phoneme
p3 the previous phoneme identity
p4 the current phoneme identity
p5 the next phoneme identity
p6 the phoneme idendity after the next phoneme
p7 the phoneme flag before the previous phoneme
p8 the previous phoneme flag
p9 the current phoneme flag
p10 the next phoneme flag
p11 the phoneme flag after the next phoneme
p12 position of the current phoneme identity in the syllable (forward)
p13 position of the current phoneme identity in the syllable (backward)
p14 undefined context
p15 undefined context
p16 undefined context
a1 the number of phonemes in the previous syllable
a2 position of the previous syllable identity in the note (forward)
a3 position of the previous syllable identity in the note (backward)
a4 the language of the previous syllable
a5 the language dependent context of the previous syllable
b1 the number of phonemes in the current syllable
b2 position of the current syllable identity in the note (forward)
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b3 position of the current syllable identity in the note (backward)
b4 the language of the current syllable
b5 the language dependent context of the current syllable
c1 the number of phonemes in the next syllable
c2 position of the next syllable identity in the note (forward)
c3 position of the next syllable identity in the note (backward)
c4 the language of the next syllable
c5 the language dependent context of the next syllable
d1 the absolute pitch of the previous note (C0-G9)
d2 the relative pitch of the previous note (0-11)
d3 the key of the previous note (the number of sharp)
d4 the beat of the previous note
d5 the tempo of the previous note
d6 the length of the previous note by the syllable
d7 the length of the previous note by 0.01 second
d8 the length of the previous note by one-third of the 32nd note
d9 undefined context
e1 the absolute pitch of the current note (C0-G9)
e2 the relative pitch of the current note (0-11)
e3 the key of the current note (the number of sharp)
e4 the beat of the current note
e5 the tempo of the current note
e6 the length of the current note by the syllable
e7 the length of the current note by 0.01 second
e8 the length of the current note by one-third of the 32nd note
e9 undefined context
e10 position of the current note identity in the current measure by the note (forward)
e11 position of the current note identity in the current measure by the note (backword)
e12 position of the current note identity in the current measure by 0.01 second (forward)
e13 position of the current note identity in the current measure by 0.01 second (backward)
e14 position of the current note identity in the current measure by one-third of the 32nd note

(forward)
e15 position of the current note identity in the current measure by one-third of the 32nd note

(backward)
e16 position of the current note identity in the current measure by % (forward)
e17 position of the current note identity in the current measure by % (backward)
e18 position of the current note identity in the current phrase by the note (forward)
e19 position of the current note identity in the current phrase by the note (backward)
e20 position of the current note identity in the current phrase by 0.01 second (forward)
e21 position of the current note identity in the current phrase by 0.01 second (backward)
e22 position of the current note identity in the current phrase by one-third of the 32nd note

(forward)
e23 position of the current note identity in the current phrase by one-third of the 32nd note

(backward)
e24 position of the current note identity in the current phrase by % (forward)
e25 position of the current note identity in the current phrase by % (backward)
e26 whether slur or not in between the current note and the previous note
e27 whether slur or not in between the current note and the next note
e28 dynamic mark of the current note
e29 the distance between the current note and the next accent by the note
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e30 the distance between the current note and the previous accent by the note
e31 the distance between the current note and the next accent by 0.01 second
e32 the distance between the current note and the previous accent by 0.01 second
e33 the distance between the current note and the next accent by one-third of the 32nd note
e34 the distance between the current note and the previous accent by one-third of the 32nd note
e35 the distance between the current note and the next staccato by the note
e36 the distance between the current note and the previous staccato by the note
e37 the distance between the current note and the next staccato by 0.01 second
e38 the distance between the current note and the previous staccato by 0.01 second
e39 the distance between the current note and the next staccato by one-third of the 32nd note
e40 the distance between the current note and the previous staccato by one-third of the 32nd

note
e41 position of the current note in the current crescendo by the note (forward)
e42 position of the current note in the current crescendo by the note (backward)
e43 position of the current note in the current crescendo by 1.0 second (forward)
e44 position of the current note in the current crescendo by 1.0 second (backward)
e45 position of the current note in the current crescendo by one-third of the 32nd note (forward)
e46 position of the current note in the current crescendo by one-third of the 32nd note (back-

ward)
e47 position of the current note in the current crescendo by % (forward)
e48 position of the current note in the current crescendo by % (backward)
e49 position of the current note in the current decrescendo by the note (forward)
e50 position of the current note in the current decrescendo by the note (backward)
e51 position of the current note in the current decrescendo by 1.0 second (forward)
e52 position of the current note in the current decrescendo by 1.0 second (backward)
e53 position of the current note in the current decrescendo by one-third of the 32nd note (for-

ward)
e54 position of the current note in the current decrescendo by one-third of the 32nd note (back-

ward)
e55 position of the current note in the current decrescendo by % (forward)
e56 position of the current note in the current decrescendo by % (backward)
e57 pitch difference between the current and previous notes
e58 pitch difference between the current and next notes
f1 the absolute pitch of the next note (C0-G9)
f2 the relative pitch of the next note (0-11)
f3 the key of the next note (the number of sharp)
f4 the beat of the next note
f5 the tempo of the next note
f6 the length of the next note by the syllable
f7 the length of the next note by 0.01 second
f8 the length of the next note by one-third of the 32nd note
f9 undefined context
g1 the number of syllables in the previous phrase
g2 the number of phonemes in the previous phrase
h1 the number of syllables in the current phrase
h2 the number of phonemes in the current phrase
i1 the number of syllables in the next phrase
i2 the number of phonemes in the next phrase
j1 the number of syllables in this song / the number of measures in this song
j2 the number of phonemes in this song / the number of measures in this song
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j3 the number of phrases in this song

Table A.1: Description of features.
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