
Combining Non-uniform Unit Selection with Diphone Based
Synthesis

Michael Pucher(1), Friedrich Neubarth(1), Erhard Rank(1), Georg Niklfeld(1), Qi Guan(2)

 (1) ftw. Telecommunications Research Center Vienna, Austria
 (2) Siemens Österreich AG

pucher@ftw.at, friedrich@oefai.at, erank@nt.tuwien.ac.at,
niklfeld@ftw.at, qi.guan@siemens.com

Abstract

This paper describes the unit selection algorithm of a speech
synthesis system, which selects the k-best paths over units
from a relational unit database. The algorithm uses words and
diphones as basic unit types. It is part of a customisable text-
to-speech system designed for generating new prompts using
a recorded speech corpus, with the option that the user can
interactively optimise the results from the unit selection
algorithm. This algorithm combines advantages of non-
uniform unit selection algorithms and diphone inventory
based speech synthesis.

1. Introduction
The unit selection method we present in this paper is used for
an application that allows a user to create new utterances of
high quality using a corpus of pre-recorded utterances of a
specific domain, for cases when the speaker is not available.
Using this system one can select from a number of candidate
unit lists from the corpus and optimise prosodic parameters
using the prosody of utterances from the corpus or of a
recording by the user (copy-synthesis), optimise
concatenation points and add the new utterances to the
corpus. The paper will focus on the unit selection module of
the system, which selects the k-best unit paths from a
relational unit database. Through the combination of words
and diphones as basic unit types and a well designed
concatenation cost function [1] one can generate high quality
synthesized prompts from the corpus.

Our search algorithm is organized in a top-down fashion
similar to the phonological structure matching algorithm used
in [2]. First, units of word size are considered, if the search
fails, the algorithm falls back to units on the diphone or
phoneme level. This makes the search considerable fast due to
the fact that the concatenation cost is minimal when the
selected units originate from the same source, it is guaranteed
that the size of actual units used for concatenation are as large
as possible. Units of intermediary size, like phrase chunks or
syllables, are not directly selected, but entered into the
algorithm indirectly. This has the advantage of keeping the
algorithm uniform and avoiding phonetically undesired
concatenation points, while still minimizing the number of
concatenation points by the strong preference for strings of
units from the same original signal.

Figure 1 depicts the architecture of the customizable text-
to-speech system (cTTS). The unit selection is based solely
on automatic transcription of the text and on the annotated
speech corpus which is stored in an SQL database [3]. The K-
best lists of units are delivered to the concatenation module.
Here, and also in the prosody manipulation and signal

processing modules the user can manually optimize the search
results.

For the annotation of the corpus we use the German
version of the Festival speech synthesis system [4][5] and an
extended version of the BOMP lexicon [6].

GUI

Transcription Unit Selection

Concatenation

Prosody
Manipulation

Sentence

Word

Diphone

Signal
Processing

Prosody
Templates

k-best

Figure 1: System Architecture of the cTTS system

2. Requirements
In order to apply the proposed unit selection method to a
recorded speech corpus, the following requirements must be
met:

• The corpus should contain every phoneme in as many
phonetic contexts as possible and also at least one
instance of diphones (phoneme combinations) with a
phonetically complex transition. It should also contain a
variety of prosodic patterns.

• The corpus must be fully segmented and annotated.

• The unit selection should use units of maximal size and
pattern, and should generate the k-best lists of units.

We assume that the corpus is primarily designed for a specific
domain, thus containing a set of the most common prompts,
and also the content words which may occur in the planned
dialogues. However, it must also contain a list of phonetically
relevant combinations of phonemes. This list is appended to
the corpus and designed solely on the basis of phonetic
considerations.

3. Architecture
Figure 2 shows the design of the database, which is based on
the utterance structure of the Festival system and extended by

a prosody template and the concatenation cost table. The
concatenation costs are loaded into memory, when the system
is started to achieve fast unit selection.

Segment

id
name
begin
end
dbegin
dend
next_seg_name
utt_id

Syllable

1:N (SylStructure)

Word

id
name
begin
end
prev_seg_name
next_seg_name

N:1 (SylStructure)

Utterance

Prosody_Template

1:1

ConcatenationCost

cost

N:1

1:N
1:N

Figure 2: Relational structure of the utterance

4. Cost Function
In order to obtain the concatenation cost between diphones,
we calculate the acoustic distance measure from the acoustic
features of the diphones. At the moment we use the
fundamental frequency, melcepstral coefficients and energy.
Each diphone can be joined only with compatible diphones
which minimizes the size of the ConcatenationCost table. The
concatenation cost for words and phonemes is calculated on
the fly.

This is possible, in the case of words, because there are
not so many concatenation points. In the case of phonemes it
is necessary, because not all possible combinations of
phonemes can be stored in the database or loaded into
memory. The number of phoneme concatenation points is
minimised by the corpus, which contains the most frequently
used and also phonetically complex diphones.

A target cost is defined between the database units and
the units one wants to synthesize and is calculated also on the
fly. For a definition of concatenation and target cost see [1].

5. Diphone Rules
Because the search is performed on the level of diphones, but
the symbolic representation refers to phonemes, the
annotation for the diphones has to be derived. A unit
candidate is defined as a phoneme with its right neighbor. The
actual begin and end of the resulting phoneme segment
entering the algorithm is re-calculated by a set of rules, thus
deriving a dynamic diphone inventory during the setup of the
database.

A standard diphone/inventory based system is static and
is supposed to be complete. Our system is dynamic and

strategic. Dynamic means that the selection of units can be
optimized during computation. However, if a diphone
candidate is missing from the corpus, the phoneme segments
have to be realigned to the original phoneme boundaries, the
concatenation costs still guarantee an optimal selection. The
burden of completeness is removed from the corpus, but the
corpus should contain the phonetically most critical
combinations (for example stop-vowel sequences). This is
only an indicative demand, if a combination is not found, the
algorithm does not fail, but follows a different strategy (see
section 6.3).

6. Algorithm
The selection algorithm proceeds in the following order.

6.1. Word Level Search

The main difference between the proposed algorithm and the
selection algorithm in [3] is that our search algorithm directly
jumps to the diphone level if a word is not found in the
database.

First we select all words that are necessary for the
utterance. The utt_id of the utterance we want to synthesize is
set to 0.

SELECT name, prev_seg_name, next_seg_name, FROM word
 WHERE utt_id=0 ORDER BY id

Then we try to find the first, second,… n-th word in
optimal contexts by trying the following queries
consecutively:

SELECT name, begin, end, FROM word
 WHERE utt_id <> 0 AND name=<NAME> AND
 prev_seg_name=<PREV_SEG_NAME> AND
 next_seg_name=<NEXT_SEG_NAME> ORDER BY id

SELECT name, begin, end, FROM word
 WHERE utt_id <> 0 AND name = <NAME> AND
 (prev_seg_name=<PREV_SEG_NAME> OR
 next_seg_name=<NEXT_SEG_NAME>) ORDER BY id

SELECT name, begin, end, FROM word
 WHERE utt_id <> 0 AND name = <NAME> ORDER BY
 id

If no units are found for a certain word the algorithm
proceeds to the diphone level.

We are aware of the fact, that phonetically speaking
lexical words rather than prosodic words are not the optimal
candidates for units. However, they are only used as symbolic
units for the search algorithm. The cost function guarantees
that prosodic words are selected as strings of lexical words, if
they are available from the corpus.

6.2. Diphone Level Search

The first query is analogous to the word level. All phoneme-
phoneme combinations serving as unit candidates are selected
where dbegin and dend are the borders of the diphone and
begin and end are the borders of the phonemes.

SELECT name, begin, end, dbegin, dend FROM segment
 WHERE utt_id <> 0 AND name=<NAME> AND
 next_seg_name=<NEXT_SEG_NAME> ORDER BY id

6.3. Phone Level Search

If a certain phoneme combination is not present in the corpus,
a diphone would be missing for concatenation. Remember
that it has to be ensured that no phonetically critical
combinations are missing during the corpus setup. The easiest
solution is to simply skip such a combination and to use the
signal from the neighboring diphones (which do consist of 2
complete phonemes by definition).

Figure 3 shows how this works for a German word
“möglich” (‘possible’). In the upper row, the diphone units
are represented. In this example we assume that all
combinations are available from the corpus except for the
combination of [2:] and [g] and of [C] and silence. The
bottom row indicates which segments are selected by the
algorithm. An asterisk after the phonetic symbol indicates that
only a part of the phoneme is used, combining with the next
segment containing the same phoneme. For example ‘g l*’
means that the full segment of the phoneme [g] is used, but
only the begin of the segment of the phoneme [l], which is
then followed by a segment ‘l* I*’, and in turn is truncated at
the beginning.

The decision for using the full phoneme segment in case a
diphone is missing from the database is not really a fall-back
strategy, since the search algorithm does not change, it is
rather a directive how to handle a failed search. In effect this
allows us to simultaneously use phoneme-sized and diphone-
sized units with a built-in preference for the latter. An
approach similar to ours uses half-phones as the basic units
[7]. However, there it is not guaranteed that critical transitions
are selected as diphones, a feature which is explicitly focused
in our system.

m(2:) 2:(g) g(l) l(I) I(C) C(_)

m 2: I* Cl* I*g l*

Figure 3: Diphone Unit Selection and corresponding
speech segments

6.4. Building the Cost Graph

The search algorithm returns a list of words and diphones,
from which a concatenation cost graph is created. At a certain
position there are different realizations of a certain unit of a
certain type. In a way this strongly resembles phonological
structure matching, e.g. the search stops when matching units
are found [2].

For each unit we insert a concatenation cost edge to all
possible consecutive units.

6.5. Finding k-best paths

The final result of the unit selection procedure need not only
give the optimal result but a list of results (the k-best paths
through the graph), such that the user can choose between
different unit lists, manipulate the units etc. For this purpose
we use Eppstein’s algorithm, which solves that k-best paths
problem for general graphs [8]. The version we use was
implemented by Victor Jimenez and Andres Marzal [9].

7. Customisation
The output of the unit selection algorithm is represented as a
set of lists of units. Now the user can modify prosodic
parameters, listen to the synthesized utterances and choose
between different lists via the Graphical User Interface,
which is displayed in Figure 4.

The k-best lists which are provided by the unit selection
can be manually corrected. Each unit segment can be
displayed in its original context, the user can manually realign
its borders, which is especially useful when larger units are
selected or if errors occurred during automatic segmentation
(like for the left border of the unit displayed in Figure 4).
The lists can also be used to tune and evaluate the
concatenation and target cost functions. For example one can
generate the 10-best lists for an utterance and verify
perceptually if they are ordered in decreasing quality.

Figure 4: Screenshot of the GUI for manual
optimization of the unit selection

Customization also includes parameters for signal
processing during unit concatenation. Besides modifying f0
and phoneme duration manually these parameters can also be
overlayed from a user recorded utterance (copy-synthesis), or
deduced from the prosody template database. Furthermore,
the linear prediction based synthesis algorithm allows for

spectral smoothing [10], which can be used for concatenation
of units when a spectral mismatch is encountered (e.g.,
between diphone units [11]).

8. Conclusions
In this paper we have presented a unit selection algorithm
which combines the advantages of non-uniform unit selection
methods and of diphone inventory based speech synthesis.
We have shown that the shortcomings inherent in these
methods can be overcome by using a carefully designed
corpus, cost functions and a top-down search algorithm.

Further optimisation of the output can be achieved by the
user herself, who can manipulate the selection of units, the
units themselves and the prosody via a graphical user
interface.

In the ongoing evaluation of our system we will measure
the search speed and the speech output quality using
databases of different size and different weights for the
concatenation and target cost functions. We will also develop
corpus design guidelines for our system.

9. Acknowledgements
The work presented here is part of the project Speech&More
carried out at the Telecommunications Research Center
Vienna (ftw.) ftw. is supported by the Kplus program of the
Austrian Federal Government.

10. References
[1] Andrew J. Hunt, Alan W. Black, “Unit selection in a

concatenative speech synthesis system using a large
speech database”, Proceedings of ICASSP 96, pp 373-
376, 1996

[2] Paul Taylor, Alan Black, “Speech Synthesis by
Phonological Structure Matching”, Eurospeech 99,
volume 4, pages 1531-1534, Budapest, Hungary, 1999

[3] Esther Klabbers, Karlheinz Stöber, “Creation of Speech
Corpora for the Multilingual Bonn Open Synthesis
System”, 4th ISCA Tutorial and Research Workshop on
Speech Synthesis, Pitlochry, Scotland, 2001

[4] Alan W. Black. Rob Clark, “The Festival Speech
Synthesis System”
http://www.cstr.ed.ac.uk/projects/festival/, Jan 2003

[5] Gregor Möhler, et.al., “IMS German Festival”,
http://www.ims.uni-stuttgart.de/phonetik/synthesis, July
2001

[6] BOMP, Bonn Machine-Readable Pronunciation
Dictionary,
http://www.ikp.unibonn.de/dt/forsch/phonetik/, 2001

[7] Alistair Conkie, Mark C. Beutnagel, et.al, “Preselection
of candidate units in a unit selection-based text-to-speech
synthesis system”, ICSLP 2000, Bejing, China, October
2000

[8] David Eppstein, “Finding the k-shortest paths”, SIAM J.
Comput., vol. 28, no. 2, pp. 652-673, 1999

[9] Victor Jimenez, Andres Marzal, “Finding the k-shortest
paths”, http://terra.act.uji.es/REA/src/EPPSTEIN-1.1.tgz,
July 1999

[10] Erhard Rank, “Concatenative speech synthesis using
SRELP in: Keller et al. (eds.): Improvements in Speech
Synthesis”, John Wiley & Sons, pp. 75-86, 2002

[11] Ester Klabbers and Raymond Veldhuis. “Reducing
audible spectral discontinuities”, IEEE Transactions on
Speech and Audio Processing, 9(1):39-51, 2001

