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Abstract
In this paper we apply speaker-adaptive and speaker-

dependent training of hidden Markov models (HMMs)
to visual speech synthesis. In speaker-dependent train-
ing we use data from one speaker to train a visual and
acoustic HMM. In speaker-adaptive training, first a visual
background model (average voice) from multiple speak-
ers is trained. This background model is then adapted
to a new target speaker using (a small amount of) data
from the target speaker. This concept has been success-
fully applied to acoustic speech synthesis. This paper
demonstrates how model adaption is applied to the vi-
sual domain, synthesizing animations of talking faces. A
perceptive evaluation is performed, showing that speaker-
adaptive modeling outperforms speaker-dependent mod-
els for small amounts of training / adaptation data.
Index Terms: Visual speech synthesis, speaker-adaptive
training, facial animation

1. Introduction
The goal of audio-visual text-to-speech synthesis is to
generate both an acoustic speech signal as well as a
matching animation sequence of a talking face, given
some unseen text as input. Most commonly, acoustic
and visual synthesis are addressed separately, and al-
though we are currently also investigating joint audio-
visual modeling, we follow the separated approach in this
paper.

Proposed visual speech synthesis systems can be clas-
sified according to several criteria, one of them being the
distinction between image-based video-realistic methods
and model-based 3D methods. While the image-based
methods (e.g., [1], [2], [3]) can produce quite convinc-
ing results, they often lack flexibility in terms of appear-
ance and perspective, a flexibility that is very desirable in
some applications like computer games and 3D-animated
films. 3D methods (e.g., [4], [5], [6], [7]), on the other
hand, provide this flexibility straightforwardly, but gener-
ating convincing speech movements on a 3D face model
is challenging. Another possible classification is that of
concatenative vs. generative methods, similar to the dis-
tinction between the two most common acoustic synthe-
sis methods today (unit selection and HMM-based). Our

work belongs to the 3D generative group, the details of
our pipeline are described in the next section.

However, as with all HMM-based approaches, large
amounts of training data are required to build high qual-
ity systems and recording large amounts of video data
is even more costly than recording audio data. To
address this shortcoming for speakers where limited
amounts of data are available, a very successful speaker-
adaptive approach has been developed [8, 9] for acoustic
HMM-based speech synthesis. A (possibly large) speech
database containing multiple speakers is used to train an
average voice, where a speaker-adaptive training (SAT)
algorithm provides speaker normalization. Then, a voice
for a new target speaker can be created by transforming
the models of the average voice via speaker adaptation,
using (a possibly small amount) of speech data from the
target speaker. This allows the creation of many speak-
ers synthetic voices without requiring large amounts of
speech data from each of them. It can be shown that syn-
thetic speech from voice models created in this way is
perceived as more natural sounding than synthetic speech
from speaker-dependent voice models using the same
(target speaker) data [8]. This holds especially for the
case where this data is of small amount. The goal of this
paper is to demonstrate how this speaker-adaptive train-
ing approach can be applied to visual speech synthesis.

The following Section 2 first describes our data and
facial animation pipeline, and then the speaker-adaptive
visual speech synthesis system that we have developed,
using the acoustic speaker-adaptive system [10] as a ba-
sis. We evaluate our system and discuss the results in
Section 3. Finally, Section 4 gives a summary and con-
clusions.

2. Adaptive visual speech synthesis system

2.1. From recorded data to 3D animation

We have recorded a synchronous corpus of acoustic and
3D facial marker data [11], which consists of three speak-
ers of Austrian German, each reading the same 223 pho-
netically balanced utterances. In addition to high qual-
ity audio recordings, we have recorded the 3D positions
of 41 reflective markers glued to the speakers’ faces at



Figure 1: Still images from the recording ses-
sion (left), the corresponding 3D marker data (mid-
dle) and the resulting pose of the virtual head
with this data applied (right). See also videos at
http://userver.ftw.at/∼schabus/interspeech2012/

100Hz using a commercially available motion capture
system called OptiTrack1. This kind of data are com-
monly used in 3D animation to drive virtual characters
within animation software packages. Figure 1 shows still
images from the grayscale videos that OptiTrack also
records (left), the corresponding 3D marker data (mid-
dle) and the resulting pose of the virtual head with this
data applied (right).

Global head motion is removed from the data using
four headband markers, which become static after “sub-
tracting” head motion and are thus removed from the
data. We have also removed the four markers correspond-
ing to the upper and lower eyelids, because we believe
phones are inappropriate temporal units for eye blink syn-
thesis. We are thus working with (41 − 4 − 4) · 3 = 99-
dimensional face representations.

To further reduce dimensionality as well as to
achieve de-correlation of the visual features before train-
ing, we apply standard principal component analysis
(PCA) via singular value decomposition (SVD). HMM-

1http://www.naturalpoint.com/optitrack/

training, adaptation and synthesis are carried out in a
k-dimensional PCA subspace of the full 99-dimensional
space. After parameter generation in the synthesis step,
however, we re-project from the reduced PCA space into
the original 99-dimensional space. Therefore the final
output of our system has the same format as the data orig-
inally recorded. In this way, our method generalizes to
different marker layouts, head models and even marker
motion re-targeting methods.

We have analyzed the features produced via PCA
using objective reconstruction error calculations [11] as
well as a perceptive evaluation. Based on those results,
we have decided on k = 30, i.e., we operate in a 30-
dimensional subspace of the full 99-dimensional space.

Given a (recorded or synthesized) sequence of marker
positions, we drive a 3D head model with matching con-
trol points (called the rig or the bones in animation ter-
minology) within a professional animation software, and
generate rendered video clips from there.

Our corpus also contains HTK quin-phone full-
context label files, providing the transcription with pre-
cise temporal phone borders. The borders were deter-
mined by carrying out hidden-Markov-model based flat-
start forced alignment on the acoustic data. We are aware
that the temporal borders of phones are not necessarily
identical in acoustic and visual data, and that there have
been efforts to address exactly these discrepancies [12],
but in our experience context-dependent phone modeling
seems to already alleviate this problem.

2.2. Visual parameter modeling framework

Figure 2 shows the speaker-adaptive visual modeling
framework. The whole system consists of a training,
adaptation, and synthesis module. Context-dependent,
left-to-right, hidden semi-Markov models (HSMMs) are
trained on multi-speaker visual databases in order to si-
multaneously model the visual features, as well as dura-
tion. We use speaker-adaptive training (SAT) based on
constrained maximum likelihood linear regression (CM-
LLR) for the training of the average visual models [8, 9].

The visual feature extraction is applied to a multi-
speaker database before training, and to a possibly dif-
ferent single speaker database before adaptation. In the
synthesis step, visual parameters are generated from the
adapted models.

The visual feature extraction for the training of the
average visual voice first applies mean normalization and
SVD to derive a matrix Uk that is used to project the data
to a lower k-dimensional space. In the adaptation step
we also perform mean normalization using the speaker
mean µs and then use Uk from average voice training to
reduce the visual adaptation features. In visual synthesis,
the generated features are projected back to the full fea-
ture space using U−1

k , and the speaker mean µs is added.
The resulting visual features are used to animate a talking
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Figure 2: Overview of the speaker-adaptive visual mod-
eling framework.

head.
We would like to emphasize that the feature projec-

tion matrix Uk is the same in the training, adaptation and
synthesis steps, and that it is determined via SVD without
using data from the target speaker, i.e., in the entire pro-
cess there is only one SVD calculation, namely across all
speakers that contribute to the average voice. The speaker
means, on the other hand, are subtracted per speaker be-
fore SVD and projection in the training part, and also be-
fore projection in the adaptation part.

In speaker-dependent modeling, the training data
comes from one speaker s, Uk and µs are determined on
that speaker’s data and the whole adaptation step is miss-
ing.

3. Evaluation
To evaluate our system, 10 held-out test utterances where
synthesized. In order to allow for direct comparison of
recorded data to synthesized utterances, the true phone
durations from the recorded data were employed instead
of generated durations from the trained duration models.
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Figure 3: Box plots of the root mean squared differences
between synthesized and recorded marker positions.

This results in all stimuli from the same speaker and ut-
terance to be of equal length on a phone-by-phone basis.

We compare the recorded data (which we will refer to
as recorded) to four training strategies: 1. The speaker-
adaptive method we presented in the previous section,
where an average voice is trained on the data of two
speakers (212 utterances each), which is then adapted
to the third speaker using also 212 utterances (adapted).
2. A corresponding speaker-dependent model, trained on
the target speaker’s 212 utterances (sd). 3. An adapted
model with a small amount of adaptation data; here, the
average voice is the same as in adapted, but for adaptation
we use the smallest set of utterances that contains each
phone at least three times (19 utterances) (adapt small).
4. A speaker-dependent model trained on the same small
amount of data (sd small).

Similar to our objective reconstruction error calcula-
tions during the analysis of the PCA projections, we have
computed objective errors by calculating the frame-wise
deviations of marker positions between recorded and syn-
thesized sequences. Figure 3 shows the resulting root
mean square errors (RMSE), calculated across all frames
of each utterance. Since we have 10 test utterances and
three speakers, each box plot contains 30 RMSE values.
Unfortunately, these objective results are not very infor-
mative. If anything, we can observe that the RMSE for sd
small is slightly larger than for the other methods. This is
mainly due to temporal misalignment: although we force
the parameter generation to produce the same phone du-
rations as the ones in the recorded data, slight temporal
shifts of the valleys and peaks of a trajectory within a
phone can cause a large error even though the movement
of the corresponding maker is “correct”. Objective eval-
uation of synthesized marker motion by comparison to
recorded data is therefore not straightforward.

Therefore, we have conducted a perceptive experi-
ment with 28 test subjects (11 female, 17 male, aged 15 to
49, mean age 27.5). Each subject saw 45 pairs of videos
showing a virtual head driven by two different models
(recorded, sd, sd small, adapted, adapted small), where
all possible combinations of methods, speakers and utter-
ances were distributed among the subjects such that each



Table 1: Pair wise comparison scores

Compared methods wins ties sig.
recorded : sd 74 : 33 20 ∗
recorded : sd small 95 : 25 10 ∗
recorded : adapt 95 : 20 10 ∗
recorded : adapt small 86 : 22 10 ∗
sd : sd small 64 : 36 22 ∗
sd : adapt 54 : 39 28
sd : adapt small 56 : 37 39
sd small : adapt 56 : 34 35
sd small : adapt small 31 : 57 37 ∗
adapt : adapt small 27 : 35 73

subject saw each of the ten method combinations, as well
as each speaker-utterance at least once. To each video
we have added a synthetic speech sample generated from
models that we trained on the corresponding speaker’s
acoustic data from our synchronous corpus. As for the vi-
sual synthesis, we have provided the phone borders from
the recordings rather than using the duration model.2

For each video pair, the subjects selected whether
they preferred the first or the second video, or they
thought they were of equal quality. The results are given
in Table 1, where we have counted the number of “won”
comparisons and the number of “ties” for each method
pair. To assess the statistical significance of these pref-
erence scores, we have computed Bonferroni-corrected
Pearson’s χ2-tests of independence with p < 0.01 for
each method pair. The results are given in the last col-
umn of Table 1, where the symbol “∗” indicates a statis-
tically significant influence of the methods on the prefer-
ence scores.

The animations that replay the recorded data are
preferred significantly more times over all the synthe-
sis methods. Furthermore, within the speaker-dependent
methods sd and sd small the reduction in training data
results in a significant difference between the two. The
result between sd and adapt is not significant, but shows
a trend towards the speaker-dependent model. However,
adapt small is preferred over sd small, and the difference
is statistically significant.

4. Conclusion
All in all this work demonstrated how to apply average
voice training and speaker adaptation to visual speech
synthesis. This is useful when creating new systems for
speakers where very few training utterances are avail-
able. In addition with limited amount of training data the
speaker adaptive approach outperforms speaker depen-
dent training. However, several additional experiments
will be conducted in future work. In particular speaker

2See example stimuli at http://userver.ftw.at/∼schabus/interspeech2012/

similarity, a measure of how close synthesized data mim-
ics specific speaker characteristics, will be investigated.
We are also currently recording a large multi-speaker
audio-visual database of different dialects of Austrian
German. Further work will address how to apply the
methods developed in this paper to more speakers and
more training data.
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