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Abstract

This paper reports on the correlation between word confusion
matrices from Word-Error-Rate (WER) experiments and dif-
ferent phonetic distance measures. The investigated phonetic
distance measures are based on the minimum-edit-distances
between phonetic transcriptions and the distances between
Hidden-Markov-Models (HMM). We show that phonetic dis-
tance measures are correlated with word confusion. The cor-
relations between word confusion of a speech recognizer and
phonetic distance are useful for a speech recognition grammar
developer or a spoken dialog system designer in developing ef-
ficient grammars and dialogs. Furthermore the measures can be
used for evaluating the quality of grammarsin terms of phonetic
confusability of words/utterances or interpretations. An exten-
sion of these measures to grammar optimization is discussed.
Index Terms. Speech recognition, speech communication

1. Introduction

Many different phonetic distance/similarity measures have been
proposed. Here we are interested in measures that can be de-
fined on resources that are available on a speech recognition
platform and do not need further data. This includes phonetic
dictionaries and acoustic models. Therefore we decided to in-
vestigate models that operate on these two types of resources.

To investigate phonetic distance models for phonetic dic-
tionaries three distance measures based on the minimum-edit-
distance [1] are used. The first measure is the standard mini-
mum-edit-distance. The second measure uses adjusted substitu-
tion weights, based on phoneme-feature-overlap [2]. The third
measures uses adjusted substitution weights, based on a pho-
netic similarity measure that is derived through perceptual sim-
ilarity tests[3].

Various phonetic distance measures that make use of acous-
tic HMM models have been proposed [4, 5, 6, 7]. Herewe use a
distance that finds the minimum total path between the states
of two HMMs, where the local distance between two states
is given by the Kullback-Leibler (KL) divergence of the two
states.

To know which type of measure should be used by a speech
recognition grammar designer to reduce WER by reducing pho-
netic confusability, we optimize the phonetic minimum-edit-
distance measures on a number recognition task. This data
is the development test set for the phonetic minimum-edit-
distance measures and the test set for the HMM and minimum-
edit-distance measures. The HMM-based measure and the
minimum-edit-distance measure, which are not optimized serve

| Phoneme | Features |
Consonant, Obstruent, Fricative,
s Continuant, Anterior, Strident,

Coronal, Unvoiced, Fortis
Consonant, Obstruent, Fricative,
z Continuant, Anterior, Strident,
Coronal, Voiced, Lenis

Table 1. Featuresof 's and 'Z.

thereby as an upper and lower bound for the performance of the
measures.

In the evaluation the optimized phonetic minimum-edit-
distance measures are correlated to word confusion and con-
fusions of interpretations of a speech recognizer for a spoken
dialog system. This system isimplemented on a Nuance dialog
platform. It provides information on fixed and mobile telephone
and internet tariffs, and allows internet problems to be reported.
It generates log-files and records the recognition result in each
dialog state.

The confusion test data for the evaluation was collected
within a usability test of a prototype implementation for a pre-
qualifying application of the Deutsche Telekom. This usability
test was performed in cooperation with Siemens AG, Corporate
Technology, Competence Center “User Interface Design”. The
recognized utterances are extracted from logging data of the us-
ability test. Reference transcriptions are made on the basis of
the speech data that islogged and processed by the recognizer.

Interpretations are natural language interpretations that the
system assigns to a certain recognized utterance. The data
from the spoken dialog system is the test set for the phonetic
minimum-edit-distance measures. We show that word confu-
sions and word distances are correlated, while there is no cor-
relation found for interpretations, which is possibly due to the
small amount of confusions for interpretations.

Furthermore we discuss the application of these measures
to the evaluation of grammars. The measures can be used in
two ways. In the design of a speech recognition grammar they
can be used to determine the phonetic confusability of a gram-
mar. For dialog system evaluation the measures can be used to
estimate a grammar score based on samples from the grammar
or recognized utterances, which can be added to other system
parameters to evaluate a spoken dialog system [8].
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Table 2: Percentages of phoneme confusion.

2. Edit-distance based measures

The first distance we used is the standard minimum-edit-
distance [1] or Levenshtein distance. We used an equal weight
6 = 1 for the edit operations substitution, insertion, and dele-
tion to have a symmetric version of this distance metric. The
minimum number of edit operations was normalized by the
length of the words. This measure is not used in the evaluation,
due to its poor performance on the number recognition data.

The second measure based on the minimum-edit-distance
uses overlaps between articulatory phonetic features as a basis
for adjusting the substitution costs of the edit distance asin [2].

From the overlap of phonetic features a phoneme similarity
is derived. For computing the phoneme similarities a weighted
Jaccard coefficient is used. It is defined as

|X1ﬁX2|
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je(p1,p2) =
where X; and X, are the features of the phonemes p; and p2
and « is a weight. Table 1 shows the phoneme features of
the consonants s and z. The phoneme similarities computed
according to Definition 1 are then used to adjust the substitu-
tion weights of the minimum-edit-distance. The more similar
two phonemes are, the cheaper there substitution will be. The
phoneme similaritiesrange from 0 to 1.

The weighted phoneme similarities are used as substitution
costs. The optimization of the weight o has asignificant impact
on the performance of the phonetic edit distance. The optimized
« value for the number domain development test set is 0.6.

Among the most similar phonemes for this task were the
consonants z and s. They appear for example in the beginning
and end of sechs (z E k s) and have all but two features in com-
mon as shown in Table 1. According to Definition 1 the simi-
larity between these two phonemes is therefore

. 7 7
je(z,8) = a7 = O.Gﬁ =0.38. 2

A third distance measure is defined by using the standard
minimum-edit-distance with perceptual similarities as weights
for the substitution costs. The perceptua similarities are taken
from [3] and are determined by a phoneme identification test.
One advantage of this measure is that the self-similarity be-
tween phonemes needs not be 0, such that the distance between
sechs (z E k s) and sechs (z E k s) is not necessarily 0. Table 2
shows some sample similarities for some phonemes. The opti-
mized « value for the number domain development test set is
0.5.

3. HMM-distance based measures

Asafourth measure we used adistance measure that is based on
the HMMs that are used by the recognizer. This measure is not
used in the evaluation since we have no access to the acoustic
models of the speech recognizer of the spoken dialog system.
Here this measure is included to compare it with the optimized
minimum-edit-distance measures.

The HMM measure is based on the Kullback-Leibler (KL)
divergence between two Gaussian mixture models (GMM). To
compute the KL divergence between two GMMs we use the
method proposed in [9].

4. Optimization of distance measures and
word confusion

The acoustic models used in these experiments were trained
with HTK on the Speechdat-AT corpus [10] which contains au-
dio data spoken by 1000 Austrian speakers both over mobile and
landline telephones. Each spesaker recorded 57 short utterances
that are relevant to a command and control task. In order to
obtain auseful number of confusions the experiments were car-
ried out on the mobile phone data of the corpus which consist of
8kHz A-law audio. 39 dimensional PLP feature vectorsinclud-
ing first and second order derivatives were extracted from the
audio data. The acoustic models were state-tied Gaussian mix-
ture HMMs with 12 mixtures per state and about 5000 states
in total. The models were evaluated on continuous sequences
of numbers ranging from 0 to 999 which were broken down
into a vocabulary of 31 words. In order to focus entirely on the
acoustic confusability, a context free grammar was used for the
recognition experiments. Thisresulted in aWER of 18.27%.

Figure 1 shows the correlation between distances and word
confusions for the four measures. Each bin shows the number of
word confusions within this distance range, normalized by the
total number of distancesin thisrange. Thereby the distribution
of the distance measures, which isnot uniform isalso taken into
account.

Ideally there would be a high number of word confusions
for low distances that is high similarities, and a low number
of word confusions for high distances that is low similarities.
Generally the distribution of three measures follows that rule,
wherethe HMM distance performs best, followed by the articu-
latory and perceptual phonetic minimum-edit-distance, and the
minimum-edit-distance.

The comparison of the minimum-edit-distance with the
phonetic minimum-edit-distances shows that the latter outper-
form the former. In our experiments we saw that the opti-
mization of the phonetic similarity weights (Definition 1) is es-
sential. Without such an optimization the phonetic minimum-
edit-distance performs worse than the measure without phonetic
similarities.

5. Evaluation of measures and word
confusion

In the evaluation we evaluated the two optimized phonetic
minimum-edit-distance measures on data from a spoken dialog
system.

The test data consisted of 1091 utterances from a spoken
dialog system with a WER of 16.4%. The understanding er-
ror rate was however only 10.9%. This error rate was deter-
mined by comparing the natural language interpretation of the
reference utterance with the one of the recognized utterance. If
a gold standard for interpretations is applied, then the under-
standing error rate is 6.5%. In the first example in Table 3 the
interpretation error disappears when using a gold standard that
tellsusthat these two word strings must have the sameinterpre-
tation. [] signifiesthat there is no interpretation.

To evaluate the performance of the measures for the test set
we again estimated the correlation of word confusion and pho-
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Figure 1: Optimized correlation between distance measures and
word confusion.

netic distance of words. Additionally the correlation of natu-
ral language interpretation confusion and phonetic distance be-
tween natural language interpretations was estimated. The natu-
ral language interpretation isthe concatenation of all slot values
that are filled by an utterance. In Table 3 there are two exam-
ples for the dot “target”, which has the values “rechnung” and
“auftrage”.

For measuring the phonetic distance between interpreta-
tions we take all utterances in the test data that |ead to a certain
interpretation (e.g. target-auftrage) and compute the phonetic
distance to all utterances that lead to another interpretation. As
the confusability between interpretations we take the mean or
maximum values.

Figure 2 and 3 show the correlation between word confu-
sions and articulatory and perceptual phonetic distances. It can
be seen that most confusions are with low distances e.g. high
similarities, which allows for the introduction of athreshold for
confusability prediction.

| | Words | NL interpretation |
Rec. | NACHFRAGE zu auftrégen target-auftrage
Ref. | NACHFRAGEN zu auftragen | []

Rec. | ABRECHNUNG target-rechnung
Ref. | ABBRECHEN abbrechen

Table 3: Word errors and understanding errors.
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Figure 2: Correlation between perceptual distance and word
confusion.

For the distances between interpretations and the confusion
of interpretations no such correlation was found. This can be
however due to the small amount of confusion data for inter-
pretations. Another reason could be that the phonetic distance
within interpretations can be high, depending on the phonetic
distance of utterances that lead to the same interpretation.

6. Application to grammar optimization

We want to use the phonetic distance measures defined for
words and interpretations for the analysis of spoken dialog sys-
tem grammars. This shall help the grammar designer to opti-
mize the grammars.

S: Wenn sie zuriick zum Hauptmenii mdchten
sagen sie “abbrechen” (To return to the main
menu say “ quit” )

U: Abbrechen (Quit)

S: Haben sie Fragen zu ihrer Rechnung? (Do you
have questions concerning charging?)

U: Nein (No)

In the above sample dialog taken from the test set ab-
brechen/quit is confused with the phonetically similar Abrech-
nung/charging, which leads to an annoying error. The same
error is made multiple times. To find such possible sources of
error the phonetic distance measures can be used.

For the analysis of spoken diadlog systems we imple-
mented four coherence measures that are based on the phonetic
minimum-edit-distance measures. These are outer-grammar,
inner-grammar, outer-vocabulary and inner-vocabulary coher-
ence.

To compute the outer-grammar coherence we sample sen-
tences from the grammar, put each sample into a class accord-
ing to the interpretation it generates, and then we measure the
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Figure 3: Correlation between articulatory distance and word
confusion.

distance between interpretations as in Section 5. The distance
between interpretations should be high to reduce the phonetic
confusability.

Theinner-grammar coherence measures the distance within
an interpretation. The distance within an interpretation should
be low. The vocabulary coherences are defined on the level
of the vocabulary. Therefore sentences are sampled from the
grammar. Then the vocabulary is extracted from the sentences,
and added to a class according to the natural language interpre-
tation of the sentence.

A graphical user interface allows the user to inspect lists
of the most confusable interpretation pairs and the most con-
fusable sentences/words between or within interpretations. One
also can browse in a list of highly self-non-confusable inter-
pretations, which means that the phonetic distance within the
interpretation is high.

One gap between the evaluation of the methods on data
from a spoken dialog system, and the use of these methods for
the analysis of spoken dialog system grammarsisthe difference
between language competence and language performance.

On the performance side (dialog system data) we see mostly
short utterances. On the competence side (sampling sentences
from grammars) we generally generate longer utterances. One
important next step to apply these measures for the optimization
of spoken dialog system grammars is therefore the pruning of
the performance space.

7. Conclusion

We optimized two phonetic distance measures concerning their
correlation to word confusion and compared them with asimple
minimum-edit-distance measure and an HMM-based distance
measure. The ordering of the measures showed that the HMM-
based measure performs best followed by the minimum-edit-
distance measures that use articulatory or perceptual phonetic
information, followed by the simple minimum-edit-distance.
Then we applied the two optimized phonetic minimum-
edit-distance measures to test data collected from logging data
of a spoken dialog system. Here we could not use the HMM-
based measure, since we had no access to the acoustic models
of the speech recognizer. The correlation of the measures with
word confusion and confusion of natural language interpreta-

tions was computed.

We saw that the optimized phonetic distance measures can
be used for predicting the word confusion and thereby the WER
by introducing a threshold. Thisis possible since most confu-
sions happen with words that are phonetically similar to each
other.

Finally we discussed the application of these measures for
the analysis of spoken dialog systems. Therefore we defined
different coherence measures that can be used for estimating
within and between interpretation coherence on a sentence or
word level.
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