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Kurzfassung

Diese Arbeit untersucht die Anwendung von Sprachmodellen die auf semantischer
Ähnlichkeit basieren, auf die automatische Spracherkennung von Meetings. Wir ver-
wenden datenbasierte Modelle der latent semantischen Analyse und wissensbasierte
WordNet-Modelle.

Modelle die auf latent semantischer Analyse basieren, werden auf verschiedenen
Hintergrunddomänen trainiert, und es wird gezeigt, dass diese Modelle die Perplexität
im Vergleich zu n-gram Modellen reduzieren. Einige Hintergrundmodelle verbessern
auch die Wortfehlerrate signifikant. Eine neue Methode für die Interpolation von
mehreren Modellen wird eingeführt und die Beziehungen zu Cache-basierten Modellen
wird untersucht. Die Semantik der Modelle wird anhand eines Synonymitätstasks
untersucht.

Modelle die auf WordNet basieren, werden für verschiedene Wort-Wort Ähnlichkeiten
definiert, welche die Information verwenden, die im WordNetgraphen gegeben ist. Es
wird gezeigt, dass diese Modelle bei der Wortvorhersage signifikant besser als Zu-
fallsmodelle sind, und dass die Wortklassen des Kontexts entscheidend für die Effek-
tivität sind. Für die Wortfehlerrate wurde keine Verbesserung gegenüber den n-gram
Modellen erzielt.
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Abstract

This thesis investigates the application of language models based on semantic similar-
ity to Automatic Speech Recognition for meetings. We consider data-driven Latent
Semantic Analysis based and knowledge-driven WordNet-based models.

Latent Semantic Analysis based models are trained for several background domains
and it is shown that all background models reduce perplexity compared to the n-gram
baseline models, and some background models also significantly improve speech recog-
nition for meetings. A new method for interpolating multiple models is introduced
and the relation to cache-based models is investigated. The semantics of the models
is investigated through a synonymity task.

WordNet-based models are defined for different word-word similarities that use in-
formation encoded in the WordNet graph and corpus information. It is shown that
these models can significantly improve over baseline random models on the task of
word prediction, and that the chosen part-of-speech context is essential for the per-
formance of the models. No improvement over n-gram baseline models is achieved for
the task of speech recognition for meetings.

III





Acknowledgments

I would like to thank Prof. Gernot Kubin for great feedback and discussions at all
stages of the work and for his encouragement to go abroad for a research visit, and Prof.
Harald Trost for his excellent co-supervision and fruitful discussions about natural
language processing.

For helping me with language modeling experiments and introducing me to the
secrets of a speech recognition system I would like to thank Yan Huang and Özgür
Çetin. Thanks to Matthias Zimmermann for chats about research in general and coffee
breaks.

Many thanks to my mentor Peter Reichl and to Ed Schofield for proofreading parts
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1 Introduction

porte, dès maintenant par
grande quantité, pourront
faire valoir le clan oblong qui,
sans ôter aucun traversin ni
contourner moins de grelots,
va remettre. Deux fois seule-
ment, tout élève voudrait
traire, quand it facilite la bas-
cule disséminée; mais, comme
quelqu’un démonte puis avale
des déchirements nains nom-
breux, sois compris, on est
obligé d’entamer plusieurs
grandes horloges pour obtenir
un tiroir à bas âge.

Marcel Duchamp, Rendez-
vous du Dimanche 6 Février
1916 à 1 H 3/4 après midi
(Daniels, 1992, p. 264) 1

door, from now on in large
quantity, will be able to set
off to best advantage the ob-
long clan which, without tak-
ing away any bolster or turn-
ing around fewer bells, will
put back. Twice only, any
student would like to milk,
when it facilitates the scat-
tered scales: but as someone
dismantles then swallows some
numerous dwarf rippings, one-
self included, one is obliged to
break open several large clocks
to obtain a drawer of tender
years.

Marcel Duchamp, Meeting of
Sunday, February 6, 1916 at
1:45 P.M. (Sanouillet and Pe-
terson, 1973, p. 174)

Besides being an inspiring work about the bounds of sense the above postcards,
taken from a work of art by the 20th century conceptual artist Marcel Duchamp,
can help to illustrate the difference between syntax and semantics and the concept
of semantic similarity. The artwork consists of four postcards with text. Above one
postcard text in French and an attempted translation into English is shown. It is
an attempt because it is questionable if a relation of translation can hold between
meaningless texts.

The intention of the artist was to produce meaningless text. The difficulty of this
is to avoid meaningful combinations that are generated by accident (Daniels, 1992, p.
266). Although the sentences are syntactically correct they lack any meaning. Chom-

1The original can be found in the Arensberg Collection at the Philadelphia Museum of Art.
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1 Introduction

sky’s (Chomsky, 1957, p. 15) famous example Colorless green ideas sleep furiously2

has the same property. It is even more rigorous in the sense that any combination of
any two words in the sentence is somehow meaningless. The meaninglessness comes
from the category mistakes that are made with each combination.

Up to now the concepts “meaningful” and “meaningless” have been used in a cat-
egorical way using a Boolean logic. A sentence is either meaningful or not. If not
meaningful it is meaningless, but it cannot be more or less meaningless. Let us now
consider a concept of semantic similarity that allows for a gradual understanding of
meaningfulness.

If such a concept of semantic similarity between words or between words and word
histories is defined it could help to find out what is so strange about Duchamp’s
postcards. Measures of semantic similarity should allow one to make judgments about
the degree of meaningfulness of a sentence. The sentences in the postcards should
get a low value of semantic similarity. Furthermore it should be possible to use these
similarity measures to predict words given the word history. For this task the semantic
model must be combined with a syntactic model.

The prediction of words from their histories is within the task of statistical language
modeling (Jelinek, 1990). This thesis shows how language models that are based on a
concept of semantic similarity can be applied in Automatic Speech Recognition (ASR)
for meetings. The term ‘multi-party meeting’ will be used to stress the fact that more
than one speaker is involved in a meeting. That these models can be successfully
applied for other tasks has already been shown by Bellegarda (2000b) and Demetriou
et al. (2000).

The term ‘language model’ is often used for statistical language models that estimate
the probability of a sentence. This probability is combined with an acoustic model
probability to get the probability of an utterance. The sentence probability can be
decomposed into conditional probabilities of words given their history. In this work
the term ‘language model’ is used in a broader sense subsuming conditional models
that allow for the prediction of a word using a context be they statistical or not.

The models investigated in this thesis are named ‘semantic similarity language mod-
els’. In comparison to other modeling approaches like word-based n-gram models it
might be misleading to talk about semantic language models. n-gram models also
model semantic relations together with syntactic and pragmatic relations. This hy-
brid nature is probably one of the properties that make these models so successful.
The label ‘semantic’ is however justified for the models investigated here because these
models focus explicitly on semantic relations.

2The notation follows Lyons (1995, p. 24) and uses single quotation marks for words (‘student’),
italics for word forms (student, students) and double quotation marks for meanings (“student”).
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1.1 Word-based n-gram language models (LM)

1.1 Word-based n-gram language models (LM)

Word-based n-gram language models are a prominent and successful type of statistical
Language Models (LMs) (Bahl et al., 1983). These models estimate the probability
of a word wn given the preceding n − 1 words. n-gram models are differentiated
by their order n (n = 1, 2, 3, 4, . . .) and are called ‘unigram’ (1-gram), ‘bigram’ (2-
gram), ‘trigram’ (3-gram) and ‘fourgram’ (4-gram) models respectively. The order is
constrained by the size of the available training data and computational complexity.
The more training data the higher the order can be. State-of-the-art word-based n-
gram models for large vocabulary speech recognition have at least order 3 or 4 (Stolcke
et al., 2005). There are several shortcomings of word-based n-gram models.

1.1.1 Problems with long-distance dependencies

Chelba and Jelinek (1998) give the following example:

(1.1) Consider predicting the word after in the sentence:
the contract ended with a loss of 7 cents after trading as low as 89 cents. A
3-gram approach would predict after from (7, cents) whereas it is intuitively
clear that the strongest predictor would be ended which is outside the reach of
even 7-grams.

Because the 3-gram 7 cents after is not likely to appear in a training corpus and
the context for prediction is restricted to the 2 preceding words 7 cents, it is not likely
that a 3-gram model can predict after in this context. n-gram models have difficulties
with constructions involving multiple prepositional phrases.

Pollard and Sag (1994, p. 157) lists 9 different types of unbounded dependency
constructions which can pose similar problems for n-gram models. For example
wh-questions like I wonder [who1 Peter loves−1] or relative clauses like This is the
politician1 [Peter loves−1]. Long-distance dependencies are an inherent problem for
word-based n-gram models.

1.1.2 Problems with data sparseness

The problem of data sparseness has two sides. As argued in the previous section the
3-gram 7 cents after is not likely to appear in a training corpus. So it will always
happen that some n-grams are not covered by the training data and more data is
needed. This is the first side of the coin.

If more training data is available the order of the n-gram model can be increased,
since some n + 1-grams are covered by the training data. But this brings new n + 1-
grams into reach that are not covered by the training data. So more data is needed.
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This is the second side of the coin. The conclusion must be that there is never enough
data to cover all n-grams.

A possibility to cope with data sparseness is to use sophisticated smoothing tech-
niques (Chen and Goodman, 1998). Applying smoothing techniques is essential to
make use of the full power of n-gram models. This can however not solve the principal
problem of data sparseness.

1.1.3 Problems with sentence context

Since word-based n-gram models model the history using the previous n − 1 words
they also have difficulties to go beyond the sentence context. For most sentences it is
necessary to model a longer history to reach beyond the sentence context.

Furthermore word-based n-gram models are sentence models. Therefore an end-of-
sentence symbol is added to the vocabulary and its frequency is also estimated from
the corpus. Thereby the models are extended from sentences of a certain length to all
sentences.

The restriction to sentences makes it impossible to model semantic and pragmatic
relations that go beyond the sentence context. These wider contexts can be especially
important for conversational speech where a sentence often refers to a previously ut-
tered sentence. One could try to model larger chunks of text like paragraphs by
including an end-of-paragraph symbol, but this sharpens the problem of data sparsity.

1.1.4 Problems with missing semantics

The example strings (1.2)-(1.5) are random samples from a 3-gram model trained on
a corpus of questions (Schofield, 2006). It is obvious from these examples that this
3-gram model does not capture the semantics and syntax of the domain.

(1.2) how do i replace the cpu fan on a comb.

(1.3) how do i colleges of cigarettes in roman bathhouses.

(1.4) how tall do postal services can i a citizenship.

(1.5) what is the expenditure for high school live camera equipment.

Example 1.2 is a syntactically correct string but it is meaningless, unless it is inter-
preted to refer to an ambient intelligence scenario with computer combs in it. Exam-
ples 1.3 and 1.4 are syntactically incorrect. Example 1.5 is syntactically correct and
semantically questionable depending on the meaning of high school live camera equip-
ment. This shows that the short-span semantics that is possibly covered by word-based
n-gram language models is not sufficient to model the semantics of sentences.
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It is not difficult to find more linguistic relations and phenomena that are not mod-
eled by word-based n-gram models. Regarding the many shortcomings of these models
it is surprising that they have been (Brill et al., 1998) and are still the dominant mod-
eling paradigm in the field of speech recognition. The main advantages of n-grams
that can explain this surprising fact are that they are easy to train on large amounts
of data and fast in the computation of sentence probabilities.

1.2 Speech recognition

The statistical model of speech recognition estimates the probability of a word sequence
given an acoustic signal. This model can be decomposed into two separate models
using Bayes’ Theorem. The first model estimates the probability of an acoustic signal
A given a word sequence W and is called ‘acoustic model’. The second model called
‘language model’ estimates the probability of a sequence of words W = 〈w1, . . . , wN 〉.
The most prominent type of statistical language models in speech recognition are
word-based n-gram models.

The task of speech recognition can be formulated as the maximization of the function
P (A |W )P (W ) over a language L

Definition 1.1 Task of speech recognition

Ŵ = arg max
W∈L

P (A |W )P (W ) .

where P (W ) is the language model, and P (A |W ) is the acoustic model.
The performance of a speech recognizer is often evaluated by the Word-Error-Rate

(WER) metric. This metric is defined as the percentage of un/misrecognized words
among all words (Jurafsky and Martin, 2000, p. 271).

1.2.1 Speech recognition hypothesis rescoring

Instead of simply maximizing the probabilities in Definition 1.1 most speech recogniz-
ers output an N -best list (Stolcke et al., 1997) or word lattice (word-graph) (Murveit
et al., 1993; Mangu et al., 1999) of word sequences (hypotheses) generated by an
acoustic model P (A | W ) and a simple language model P (W ). This simple language
model is often a bigram model. Then a sophisticated language model is used to reorder
these hypotheses. This process is called ‘speech recognition hypotheses rescoring’, or
‘rescoring’ for short. The process of generating the hypotheses with the acoustic model
and the language model is called ‘decoding’.

A very well known algorithm for decoding is the Viterbi algorithm (Viterbi, 1967).
If the Viterbi algorithm is used for decoding one is limited to a bigram language model.
If a higher order model would be used the dynamic programming invariant assumption
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is false (Jurafsky and Martin, 2000, p. 246). This assumption says that a best-path
that contains a state qi must also contain the best-path up to and including qi. This is
however false for more sophisticated language models like trigrams or Latent Semantic
Analysis (LSA)-based models (Chapter 4). Therefore a multiple pass decoding method
is chosen. A bigram is applied in the first decoding step, which generates N -best lists
or word lattices. The N -best sequences are generated with the acoustic model and a
bigram according to Definition 1.1. Then the more sophisticated language model is
applied to the N -best lists. To avoid multiple-pass decoding, an A* or stack decoder
can be used instead of the Viterbi decoder (Jurafsky and Martin, 2000, p. 253).

The main advantages of this multi-pass approach are that the very efficient 2-gram
can be used in the first pass and the sophisticated language model need not necessarily
be a statistical LM as is necessary in Definition 1.1. A major disadvantage is that a
sequence which is not in the N -best list or word lattice cannot be recovered.

The rescoring of speech recognition hypotheses can either be done on word lattices
or N -best lists. Word lattices are graphs of words, such that each path through the
graph represents a speech recognition hypothesis. The word lattice contains the most
likely sentence hypotheses identified in the decoding stage. It thereby constrains the
search space of subsequent recognition passes (Murveit et al., 1993).

Schwartz and Chow (1990) use an N -best algorithm to apply linguistic knowledge
sources successively. In this way one knowledge source can prune the search space of
the next. Additionally the knowledge sources do not have to proceed in a left-to-right
manner.

Demetriou et al. (2000) showed that a semantic similarity language model derived
from a machine readable dictionary can improve word prediction on simulated speech
recognition hypotheses. N -best lists generated from phoneme confusion data and a
pronunciation lexicon are used for rescoring. This method can use a wide context
which is possible for all methods using a measure of semantic similarity.

1.2.2 Word-error-rate (WER)

WER is the standard metric to evaluate the performance of a speech recognizer. It is
defined as (Jurafsky and Martin, 2000, p. 271)

Definition 1.2 Word-error-rate (in percent)

WER = 100
insertions + substitutions + deletions

total words in correct transcript
.

The number of insertions, deletions and substitutions is the minimum number of
these operations that is necessary to transform a correct reference transcript into the
hypothesized output of the speech recognizer. It is computed with the minimum
edit distance algorithm (Wagner and Fischer, 1974). Since there are possibly more
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operations necessary than the number of words in the correct transcript, the WER
can be above 100%.

Some have argued that this metric is not always the best suited evaluation metric
for speech recognition (Wang et al., 2003).

. . . more important than word error rate reduction, the language model
for recognition should be trained to match the optimization objective for
understanding.

Therefore Wang et al. (2003) optimized the understanding-error-rate or understand-
ing accuracy and not the WER. They introduced a task classification error rate and a
slot identification error rate. The references were manually annotated concerning tasks
and slots, and then compared with the task and slot results of the speech recognizer.
For the comparison they used the same metric as for WER applied to tasks and slots
instead of words.

It is easy to think of a speech recognizer having low WER but also high understanding-
error-rate compared to a recognizer with higher WER but also lower understanding-
error-rate. This happens if mainly words that are important in the context of the
application or that carry the meaning of the utterance are misrecognized. Semantic
language models can be beneficial for reducing the understanding-error-rate.

Nevertheless WER is one of the most objective evaluation metrics that are available.
Other metrics like ‘understanding-error-rate’ or ‘understanding accuracy’ are depen-
dent on a certain application context that determines the domain of understanding. If
an application context is given it is possible to define metrics that optimize the goal of
the application better than WER. In this thesis WER is used as the evaluation metric
since the application context in ASR for multi-party meetings is not determined. The
recognition results can be used as transcripts, for information retrieval (Koumpis and
Renals, 2005), summarization (Murray et al., 2005) or dialog-act classification (Zim-
mermann et al., 2005). For each of these applications different evaluation metrics are
optimal.

1.2.3 Automatic speech recognition (ASR) for multi-party meetings

Morgan et al. (2003) refers to the processing of spoken language from meetings as a
nearly ASR-complete problem in the sense that most problems in the processing of
spoken language have to be solved to solve this problem. In Artificial Intelligence (AI)
a problem is called ‘AI-complete’ if all other problems in AI can be reduced to this
very problem by some reasonably complex procedure. AI-completeness is defined in
analogy to Non-deterministic Polynomial time (NP)-completeness (Cook, 1971). The
main difference between AI and NP-completeness is that algorithmic solutions to all
NP-complete problems like ‘satisfiability of a formula in classical propositional logic’
are known, but to this day there is no solution to any AI-complete problem. Of course,
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if there would be a solution to one AI-complete problem, all problems in AI would be
solved since they can be reduced to this problem.

It is assumed that the class of AI-complete problems contains the problem of Natu-
ral Language Understanding (NLU). If the processing of spoken language from meet-
ings contains the NLU problem it would be AI-complete and not only ASR-complete.
Speech recognition of multi-party meetings is one sub-task of spoken language process-
ing of meetings. Examples of multi-party meetings are regular meetings, talks, and
discussions.

The complexity and difficulty of a speech recognition task can be determined by var-
ious parameters. Table 1.1 taken from Cole et al. (1998, p. 4)3 shows some important
parameters ranging from less complex (‘isolated words’) to more complex conditions
(‘continuous speech’). By describing problems with these parameters they can be
ranked by their complexity.

According to these parameters the recognition of multi-party meetings is among the
most complex tasks. So it is justified to call this task ‘ASR-complete’. ASR for multi-
party meetings is continuous, spontaneous, speaker-independent, large vocabulary (>
20, 000 words) speech recognition. It goes beyond finite-state language models that
determine exactly which words can follow each word. How far beyond depends on the
language models that are applied. The perplexity is large and the signal-to-noise-ratio
can be low. Since it need not involve a noise-canceling microphone it is also complex
according to the last parameter.

Parameters Range (Complex to more complex)
Speaking Mode Isolated words to continuous speech
Speaking Style Read speech to spontaneous speech

Enrollment Speaker-dependent to Speaker-independent
Vocabulary Small (< 20 words) to large (> 20,000 words)

Language Model Finite-state to context-sensitive
Perplexity Small (< 10) to large (> 100)

Signal-to-Noise-Ratio High (> 30 dB) to low (< 10 dB)
Transducer Noise-canceling microphone to telephone

Table 1.1: Typical parameters used to characterize the capability of speech recognition
systems.

Shriberg (2005) mentions four fundamental challenges for the recognition of spon-
taneous speech as it is found in multi-party meetings.

• A first challenge is the recovering of hidden punctuations like sentence bound-
3The table is the same as in Cole et al. (1998) with the replacement of ‘voice-canceling microphone’

by ‘noise-canceling microphone’.
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aries. In certain types of conversational speech and applications like dialog sys-
tems, pauses can be used for sentence boundary detection. But in meetings
pauses can be parts of hesitations or disfluencies. Since most language models
are trained on written or transcribed text containing punctuation, the recovering
of hidden punctuation has an impact on language modeling.

• Another source of complexity in meetings is disfluency. Pauses, repetitions and
repairs can cause problems for higher-level natural language processing.

• Another feature found in meetings and telephone conversations that is hard to
model is the presence of overlap between speakers.

• A fourth challenge is the detection of user emotion and user state. These classi-
fications are used in higher-level processing.

This work does not deal with all the challenges. But most challenges have to be
faced at processing steps that directly influence language modeling. If for example the
recovering of hidden punctuation is poor it is likely that the language model fails.

1.3 Motivation to use language models based on semantic similarity

Language models based on semantic similarity can deal with certain problems of word-
based n-gram models. Two different types of these models namely LSA-based (Chap-
ter 4) and WordNet-based models (Chapter 5) are investigated in this thesis.

LSA models are data-driven. A semantic similarity is derived from the co-occurrence
of words in a corpus of documents. Based on the Singular Value Decomposition (SVD)-
reduced co-occurrence matrix (Deerwester et al., 1990; Berry, 1993) a similarity be-
tween words and documents is defined.

WordNet-based models are knowledge-based. These models use the information in
the WordNet graph and word definitions. WordNet (Fellbaum, 1998, p. 9) is a graph
of semantic relations between senses of English content words (nouns, verbs, adjectives
and adverbs). WordNet-based models define similarities between pairs of words and
pairs of senses.

By considering these two types of models different paradigms of AI are covered.
The discussion about data-driven versus knowledge-based approaches and the division
of the field along these lines is exemplified by the history of speech and language
processing (Jurafsky and Martin, 2000, p. 10)(Manning and Schütze, 1999, p. 4).

The principle motivation of this thesis is to compare two different language modeling
paradigms for the same task. Both modeling paradigms can include long histories
which is an advantage over the n-gram approach. The usage of the WordNet-based
models is driven by the assumption that all available useful knowledge sources should
be used in language modeling.
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1.3.1 Coping with long-distance dependencies

Language models based on semantic similarity can deal with long-distance dependen-
cies in different ways. With LSA-based models that define a similarity between words
and documents it is possible to encode the whole history of a dialog as a document.
In this way one can measure the similarity between a word and its history.

The similarity between two words, defined by WordNet-based models, can be easily
extended to a similarity between a word and a set of words. In Example 1.1 the
semantic similarity between after and ended can be used to predict ended.

1.3.2 Coping with data sparseness

LSA-based models can encode any history of words in the vocabulary as a document.
In this way the data sparseness problem is not solved but it is not so pressing anymore.
Since this encoding works in general there is also no need to apply smoothing methods.
Still the model is dependent on the availability of suitable training data.

WordNet-based models define a semantic similarity between any two pairs of words
that are contained in WordNet. WordNet is available for English and smaller versions
are available for other languages. With this method it is however only possible to model
relations between words and histories of words that are contained in WordNet. Since
the English version of WordNet contains many words the data sparseness problem is
also not so pressing.

If WordNet does not contain a certain word, a combination of WordNet and LSA-
based modeling may be used to include the word in a WordNet-based LM. Therefore
one has to find the word in WordNet that is most similar to the missing word, using
an LSA model. Then the word found in WordNet is used to model the WordNet
semantics of the missing word.

1.3.3 Extending sentence context

In the same way the models cope with long-distance dependencies, they can cope with
even longer-distance dependencies going beyond the sentence context. This longer-
distance context can include the whole dialog or meeting history or parts of it. The
extension beyond the sentence context is especially important in multi-speaker lan-
guage modeling (‘meetings’, ‘telephone conversations’) where words uttered by one
speaker are directly dependent on words uttered by other speakers (Ji and Bilmes,
2004).

1.3.4 Including semantics

Assuming an intuitive concept of semantic similarity and assuming further that LSA
and WordNet models somehow cover this concept, it can be shown how semantic

10



1.3 Motivation to use language models based on semantic similarity

similarity can be applied in the above examples (1.2)-(1.5).
In Example 1.2 the low semantic similarity between CPU and comb makes this string

less likely. In Example 1.3 and 1.4 there are low similarities between cigarettes/bathhouses
and postal/citizenship.

That LSA models reflect an intuitive concept of semantic similarity to a certain
extent has been shown by Landauer and Dumais (1997). That WordNet-based models
correspond to an intuitive concept of semantic similarity has been shown by Budanit-
sky (1999).

1.3.5 Application to ASR for multi-party meetings

Spkr Text

. . . . . .

A the administration/n point/n so few/a okay/a too
A adding/v in the documentation/n
A or some technical/a point/n of few/a so just like meanness/n like and of corner/v

all the teams/n
B okay/a i ’ll get/v back to you on that
A and uh it does/v so what’s what you think/v of what uh
A this is/v a project/n for the remote/a control/n and the do/v you have/v some

already find/v something/n for you marketing/v strategy/n or of the same
study/n

C we are/v not yet other/a than uh
C doing/v research/n in taking/v remote/a controls/n on looking/v what other/a

companies/n have/v to do/v uh what their building/n
C their design/n of their ideas/n uh
C also at the pinpoint/v which marker/n we’re/v going/v to go/v into
C there should be/v a fairly large/a market/n because um the number/n of

people/n that the competition/n
C have/v to be/v something/n that it draws/n people/n saying/v hey/n i like this

Table 1.2: History of AMI meeting with 1-best scored entry.

It is conjectured in this thesis that semantic similarity can improve ASR for multi-
party meetings, because meetings have clear topics, and these models can dynamically
adapt to topics. Below an example N -best list (Table 1.3) is shown, that is decoded
using an acoustic model and a 2-gram in the first pass, and a 4-gram in the second pass.
The Part-of-Speech (POS) tags are given for nouns (/n), verbs (/v) and adjectives
(/a). Table 1.2 shows the 1-best history that precedes this N -best list. It contains
the utterances with the highest scores that are used as a context for rescoring of the
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N -best list.
The similarities in Table 1.3 are obtained by computing one semantic similarity score

between nouns in the N -best list and nouns in the history (Definition 5.5). A second
similarity score is computed between verbs and adjectives in the list, and nouns, verbs,
and adjectives in the history (Section 5.2.1). For each measure the last 20 words in the
history are taken into account. Utterance-context coherence (Definition 5.19) is used
as a coherence metric. Then the two scores are added. It can be seen that the N -best
list element number 16, which is the correct result, has the highest similarity score
given the history. The first element which is the best result after n-gram rescoring is
completely meaningless and has a lower semantic similarity. The topic discussed in
this meeting is the design of a remote control.

Nr Text Sim

1 whether we’re/v sonata/n they have/v the first/a say/v i like because i like the design/n 0.18

2 whether we’re/v sonata/n they have/v the first/a say/v i like because i like/v to design/v 0.16

3 whether we’re/v sonata/n they have/v the first/a say/v i like because i liked/v the design/n 0.18

4 whether we’re/v sonata/n they have/v the first/a say/v i like this i like the design/n 0.18

5 weather/n works/n or not and i have/v the first/a say/v i like because i like the design/n 0.22

6 whether we’re/v sonata/n they have/v the first/a say/v i like this i like/v to design/v 0.16

7 weather/n works/n or not and i have/v the first/a say/v i like because i like/v to design/v 0.20

8 weather/n works/n or not and a half/n the first/a say/v i like because i like the design/n 0.19

9 weather/n works/n or not and a half/n the first/a say/v i like because i like/v to design/v 0.17

10 weather/n works/n or not and i have/v the first/a say/v i like because i liked/v the design/n 0.22

11 weather/n works/n or not and i have/v the first/a say/v i like this i like the design/n 0.22

12 weather works or not and a half the first say i like because i liked the design 0.19

13 weather/n works/n or not and a half/n the first/a say/v i like because i liked/v the design/n 0.18

14 whether we’re/v sonata/n they have/v the first/a say/v i like those i like the design/n 0.19

15 weather/n works/n or not and a half/n the first/a say/v i like this i like the design/n 0.20

16 whether it works/v or not and i have/v the first/a say/v i like because i like the design/n 0.25

17 whether it works/v or not and i have/v the first/a say/v i like because i like/v to design/v 0.14

18 weather/n works/n or not and a half/n the first/a say/v i like this i like/v to design/v 0.17

. . . . . . . . .

Table 1.3: Example N -best list from the AMI meetings with semantic similarities.

The combination of scores is an optimization problem. The simple addition of
similarity scores applied here is the reason for the low semantic similarity of list element
17 compared to list element 16. Element 17 is equivalent to 16 except that the design
is replaced by to design. In the context of to the word form design is tagged as a
verb by the POS tagger and the semantic similarity for nouns remains zero. More
sophisticated combination and interpolation methods are discussed in Chapter 5.
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2.1 Outline

Chapter 3 gives an overview of different language modeling techniques and discusses
their advantages and disadvantages. n-gram Language Models (LMs), including word-
based n-gram models, structured LMs, and “semantic LMs” are discussed. “Semantic
LMs” include LSA and WordNet-based models as well as a probabilistic variant of La-
tent Semantic Analysis (LSA) called Probabilistic Latent Semantic Analysis (PLSA).
Finally a brief sketch of maximum entropy LMs is given, and the usage of LSA features
for maximum entropy modeling is discussed. This overview motivates the selection of
the two types of LMs used in this thesis.

Chapter 4 defines LSA-based LMs and applies them to ASR for multi-party meetings.
The “semantics” of these models is investigated and model parameters are optimized.
For the perplexity and Word-Error-Rate (WER) experiments meeting data and dif-
ferent background domain data are used. The models are trained for these different
domains, and interpolated with word-based n-gram models. The interpolation of mul-
tiple LSA models with an n-gram model is defined, and experiments are conducted.

Chapter 5 defines WordNet-based models using different word-word similarities that
are derived from the WordNet graph. Then these models are applied to ASR for
multi-party meetings. A word prediction task and a metric are defined to evaluate
the performance of the models. This metric has the same purpose as the perplexity
measure that is used for probabilistic models. Since WordNet contains Part-of-Speech
(POS) tags for each word it includes, this information is used in the WordNet models
such that POS-tagged words are predicted from a POS-tagged context.

Chapter 6 discusses the relation between the two modeling paradigms that are used
in this thesis and empiricism and rationalism. The rationalist properties of WordNet-
based models as well as the empiricist features of LSA-based models are discussed.

Chapter 7 reviews the results of Chapter 4 and Chapter 5 and draws some conclusions
from these results concerning n-gram LMs and brute-force approaches for large training
data sets. Furthermore some ideas for future work are presented.

Appendix A is a documentation of the LSA modeling toolkit that was developed to
perform the experiments. It can be used to train and test LSA-based language models.
Different interpolation methods can be used for testing, including the interpolation of
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multiple LSA models. The toolkit extends the Stanford Research Institute Language
Modeling (SRILM) toolkit, which provides a lot of useful functions to train and test
n-gram LMs.

2.2 Contributions

In this thesis language models based on semantic similarity were used because they can
model long-distance dependencies and go beyond the sentence context. Furthermore
we think that these models are useful in ASR for meetings, because meetings have
clear topics, and these models can dynamically adapt to topics.

LSA-based models were chosen as an example for data-driven models since they al-
ready have been applied to speech recognition tasks for other domains, such that results
can be compared. WordNet-based models were chosen as an example for knowledge-
based models because WordNet has a good coverage, and WordNet-based models have
also already been applied to tasks similar to speech recognition.

We wanted to compare the models to state-of-the-art baseline models that are used in
a meeting recognition evaluation task, where speech recognizers of different institutions
are compared. In our case the baseline model was an interpolated word-based n-gram
model that is trained on approximately 1 billion word tokens.

From these assumptions follows the main hypothesis that is investigated in this
thesis:

• Language models based on semantic similarity can improve Automatic Speech
Recognition (ASR) for multi-party meetings compared to state-of-the-art word-
based n-gram models.

Although it is shown that this hypothesis is false for the large interpolated n-gram
model, there are other positive results that are achieved when using smaller baseline
models. For LSA background domain models WER and perplexity improvements are
achieved, as well as improvements on word prediction for WordNet-based models.

To investigate this hypothesis the performance of LSA-based language models and
WordNet-based language models on ASR for multi-party meetings is evaluated. The
following research questions following from the main hypothesis of this thesis are posed
and answered in this work.

Chapter 4 evaluates the performance of LSA-based language models in ASR for multi-
party meetings.

1. In Subsection 4.2.5 a new method for combining multiple LSA models is
introduced.

2. In Section 4.4 an extensive analysis of LSA models is conducted, including
the optimization of parameters for combining multiple LSA models.
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3. In Section 4.3 the performance of LSA models on a synonymity task is
evaluated.

4. In Section 4.5 LSA-based language models are trained on different back-
ground domain data. It is shown that all models outperform n-gram mod-
els in terms of perplexity, and some models outperform n-gram models
in terms of WER.

Chapter 5 evaluates the performance of WordNet-based language models in ASR for
multi-party meetings.

1. Subsection 5.2.4-5.2.5 defines new word-utterance context measures and
new utterance coherence measures.

2. Subsection 5.3.1-5.3.6 shows that WordNet-based relatedness measures
outperform the baseline models in word prediction for conversational
speech.

3. Subsection 5.3.6 shows that the measures perform best for different parts
of speech (nouns, verbs, adjectives) when using different POS contexts
(e.g. nouns for predicting nouns).

4. Subsection 5.3.4 contains an evaluation of WordNet-based relatedness mea-
sures using the monologue context for word prediction in conversational
speech.

5. Subsection 5.3.7-5.3.7 contains results on the application of different context
measures to ASR for multi-party meetings.

2.3 Publications

Parts of the content of Chapter 4 were first published in

• (Pucher and Huang, 2005) Latent semantic analysis based language models for
meetings. In MLMI05, 2nd Joint Workshop on Multimodal Interaction and Re-
lated Machine Learning Algorithms, Edinburgh, UK.

• (Pucher, Huang, and Çetin, 2006a) Combination of latent semantic analysis
based language models for meeting recognition. In Computational Intelligence
2006, Special Session on “Natural Language Processing for Real Life Applica-
tions”, pages 465–469 San Francisco, USA.
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• (Pucher, Huang, and Çetin, 2006b) Optimization of latent semantic analysis
based language model interpolation for meeting recognition. In 5th Slovenian and
1st International Language Technologies Conference, pages 74–78, Ljubljana,
Slovenia.

Parts of the content of Chapter 5 were first published in

• (Pucher, 2005) Performance evaluation of WordNet-based semantic relatedness
measures for word prediction in conversational speech. In Proceedings of 6th
International Workshop on Computational Semantics (IWCS-6), pages 332–342,
Tilburg, Netherlands.

2.4 Application of results to other tasks

The results of this thesis could be applied for tasks other than ASR for multi-party
meetings. The results concerning the performance of WordNet-based models for dif-
ferent POS contexts can be used for all types of WordNet applications that use a
semantic similarity of a word and a context, such as conceptual identification and
query expansion (Morato et al., 2004). The WordNet-based language models could
be applied to other speech recognition tasks, where it is beneficial to have a wide
multi-party context or where only a small amount of training data is available.

The combination of multiple LSA models could be useful for other speech recognition
tasks where it is necessary to train models on large amounts of data. These types of
models have been first applied successfully to Information Retrieval (IR) (Deerwester
et al., 1990). The combination of multiple LSA models that can cover large training
corpora could also be interesting for IR.
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3 Overview of language modeling techniques

This chapter provides an overview of language modeling techniques that have been
proposed. Such an overview has to be incomplete, regarding the many different ap-
proaches that have been discussed. In this chapter techniques are discussed that can
overcome shortcomings of word-based n-gram models that can also be overcome by
LSA and WordNet-based models. These shortcomings are described in Section 1.1.

Considering the classification of language modeling techniques, four different groups
are introduced. These are n-gram language models, structured language models, topic
models and WordNet-based models. Conditional n-gram models can be conditioned
on different types of events. Here word-token-based n-gram models and class-based
n-gram models are discussed. Structured language models can focus on syntactic or
semantic structure. The semantic structure model introduced below is an integration
of Automatic Speech Recognition (ASR) and written language understanding which
results in one full approach for Spoken Language Understanding (SLU). The models
that are based on WordNet can either be graph-based or text-based.

Finally the maximum entropy framework is introduced. This framework is not a
specific language modeling technique but a framework for integrating language model-
ing approaches. A sketch of an integration of Latent Semantic Analysis (LSA) based
model features with other features is given. The maximum entropy framework can
also replace model interpolation, which is at the heart of the central problem of model
adaptation (Bellegarda, 2004). It can also be understood as a smoothing technique
for estimating un-seen events.

3.1 n-gram language models (LM)

n-gram Language Models (LMs) estimate the probability of an event given the pre-
ceding n − 1 events. These events can be words, or word classes, or hidden events
like disfluencies or sentence boundaries (Liu et al., 2003). This group of LMs is very
popular.

3.1.1 Word-based n-gram language models

These models were first used by Jelinek (1976); Baker (1975); Bahl et al. (1983) for
speech recognition. Word-based n-gram language models estimate the conditional
probability of a word wn given the preceding n− 1 words P (wn | w1, . . . , wn−1).

The word wni that gets the highest probability is the most likely word given this
context. The joint probability of a sequence of words can be obtained through the
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3 Overview of language modeling techniques

multiplication rule. With the Markov assumption that the n-th word is only dependent
on the preceding n − 1 words an approximation of the joint probability is obtained.
The value of n is again the order of the model and N is the number of words in the
sequence.

Definition 3.1 n-gram language model

P (w1, . . . , wN ) =
N∏

i=1

P (wi | w1, . . . , wi−1)

= P (w1)P (w2 | w1) . . . P (wN | w1, . . . , wN−1)

≈
N∏

i=1

P (wi | wi−n+1, . . . , wi−1)

If i < n then i − n + 1 < 1 and the word index is smaller than 1. Words with
indices smaller than 1 are mapped to the empty word. A first approximation for the
computation of P (wn | w1, . . . , wn−1) is the maximum likelihood estimate, given by
the formula

Definition 3.2 Maximum likelihood estimation

P (wn | w1, . . . , wn−1) ≈
C(w1, . . . , wn)

C(w1, . . . , wn−1)
.

C(w1, . . . , wn) is the number of n-grams of the form w1, . . . , wn. For sentence models
the n-gram counts for the word-based n-gram models are obtained by counting how
often an n-gram appears in the sentences of a corpus. The end-of-sentence symbol is
introduced as a separate word.

The maximum likelihood estimate maximizes the probability of the events seen in
the training data. To extend this approach to unseen events, n-gram models use sophis-
ticated smoothing methods. Chen and Goodman (1998) give an empirical comparison
of different smoothing methods. In Chapter 5 and Chapter 4 modified Kneser-Ney
smoothing is used for the baseline n-gram models. This method was introduced by
Chen and Goodman (1998) and is an extension of a smoothing method proposed by
Kneser and Ney (1995).

3.1.2 Part-of-speech (POS) and class-based n-gram LM

Part-of-Speech (POS) and class-based language models use the POS tags of words
(verb, noun, adjective,. . .) or the class to which a word belongs to predict the next
word. Through this generalization these models can cope with data sparseness. The
classes can be automatically derived from a corpus. The algorithm described in Brown
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3.1 n-gram language models (LM)

et al. (1992) can be used for the derivation of word classes. Suppose W is a sequence
of words 〈w1, . . . , wN 〉 or w1,N for short, ci is the class of word wi and T = 〈t1, . . . , tN 〉
or t1,N for short is a sequence of POS tags.

A class-based 3-gram model can be defined as (Heeman, 1998)

Definition 3.3 Class-based 3-gram model

P (wn | w1, . . . , wn−1) ≈ P (wn | cn) P (cn | cn−2, cn−1) .

Here each word belongs to exactly one class. For POS-based models this approach is
extended to all possible POS sequences. This leads to a conditional POS-based model
defined through

Definition 3.4 POS-based n-gram model

P (w1, . . . , wN ) ≈
∑

t1,...,tN

N∏
i=1

P (wi | ti) P (ti | ti−n+1, . . . , ti−1) .

This model makes the assumption that a POS tag of a word is only dependent on the
previous n−1 POS tags, and the additional assumption that a word is only dependent
on a POS tag. The difference between the two models is that a word has a conditional
probability for each POS tag in the POS-based model, while it only belongs to one
class in the class-based model.

Heeman (1998) integrated POS tagging and speech recognition. He, therefore, does
not only estimate the probability of a sequence of words W , P (w1, . . . , wN ) but the
joint probability of words and POS tags P (w1,N , t1,N ). The probability of this joint
POS-based n-gram model is defined as

Definition 3.5 Joint POS-based n-gram model

P (w1,N , t1,N ) =
N∏

i=1

P (wi | w1,i−1, t1,i) P (ti | w1,i−1, t1,i−1)

where wi,j and ti,j are the corresponding subsequences. Definition 3.5 is equal to
Definition 3.4, except for the missing summation and the unconstrained conditioning
on the whole word and tag history. The estimation of the probabilities in the above
model is done with a decision tree learning algorithm that partitions the context into
equivalence classes (Heeman, 1998). This is necessary since Definition 3.5 is not an
approximation but includes the whole context. This method provides an integration
of word-based n-gram models and POS-based models since the combination of words
and POS tags is maximized.

19
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3.2 Structured language models

3.2.1 Syntactically structured LM

A syntactically structured LM is proposed in Chelba and Jelinek (1998) and is an
extension of the model proposed in Chelba et al. (1997). This type of model estimates
the probability of a word sequence W and a complete parse T , P (W,T ).

The motivation to develop such language models was to overcome the weakness of
n-gram language models in coping with long distance dependencies.

The main idea is to build a partial parse of the word history that can be used to
predict the next word. The model operates with three steps including a word predictor,
a tagger and a parser. The word predictor predicts the next word given the partial
parse. The tagger predicts the POS tag of the next word using the partial parse and
the word. The parser finally grows the binary branching structure of the parse.

In Charniak and Johnson (2001) this model was extended to the parsing of tran-
scribed conversational speech. Traditionally parsing was evaluated on written text
while the parsing of transcribed speech was neglected. Since speech contains disfluen-
cies like repetitions and repairs a robust parsing method is needed. To achieve this,
disfluencies are detected and removed from the transcription. The detection of disflu-
encies is done automatically and according to the gold standard annotation performed
by human annotators. This results in two transcriptions without disfluencies. Parsers
are then trained on these transcriptions.

The disadvantage of these models is the high computational complexity and the
necessity for parsed corpora as training material. An approach to solve the second
problem is the unsupervised learning of grammars like it is discussed in Solan et al.
(2005).

3.2.2 Semantically structured LM

Semantically structured language models can be used for the integration of ASR and
written language understanding that gives a full approach of SLU. The task of SLU
is to find the best meaning representation M̂ = 〈q1, . . . , qM 〉 given a string of words
W = 〈w1, . . . , wN 〉 (Wang et al., 2005). This is slightly different from the task of speech
recognition. That is the reason why people argued for using a different performance
metric than Word-Error-Rate (WER) for SLU. Clearly, for SLU it is of high impor-
tance to get the content words right. State-of-the-art SLU systems that are deployed
in todays spoken dialog systems mostly operate on limited domains. These systems are
able to understand a few concepts where an underlying Context-Free Grammar (CFG)
or n-gram trained on domain data is used for speech recognition (Cohen et al., 2004,
p. 257). The CFG can also be combined with an n-gram model to achieve more
robustness. This understanding and realization of SLU is however far away from full
spoken language understanding in the intuitive sense.
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3.2 Structured language models

Definition 3.6 Task of written language understanding

M̂ = arg max
M

P (M |W ) = arg max
M

P (W |M)P (M)

P (M) is called the ‘semantic prior’ that gives the probability of a semantic repre-
sentation. P (W | M) is the lexicalization model. The task of lexical selection that
is performed by the lexicalization model is also a sub-task of Natural Language Gen-
eration (NLG) (Cole et al., 1998, p. 139). Other NLG tasks are discourse structure
planning and sentence planning.

Definition 3.7 n-gram lexicalization model

P (W |M) =
∑
L

P (W,L | q1, . . . , qM )

=
∑

π=φ1,...,φM

P (π | q1, . . . , qM )

≈
∑

π=φ1,...,φM

M∏
i=1

P (φi | qi) .

The simplest lexicalization model assumes a one-to-one correspondence between the
states qi of the meaning representation M = 〈q1, . . . , qM 〉 and segments of the word
sequence W . Let L be a possible lexicalization of the string W , its division into
phrases. Let π = φ1, . . . , φM be a partition (lexicalization) of the word string W
that corresponds to the joint event (W,L). With the additional assumptions that the
segment order follows the order of the states, that there is no segment overlap (i.e.
the sentence is equal to the concatenation of segments), and the modeling of P (φi | qi)
with state-specific n-grams one gets the n-gram lexicalization model

These assumptions are valid if there is a one-to-one correspondence between states
and segments. An example discussed in Wang et al. (2005) (Show me flights from
Seattle to Boston) allows for this type of modeling. A possible segmentation is π =
Show me,flights, from Seattle, to Boston which is likely to get a high probability for
the states M = command, subject, DCity, ACity. The n-gram models can be used to
model each state independently or the words in the context of the previous state can
also be taken into account.

The n-gram lexicalization model has to be extended for ambiguous cases. The
sentence Book a flight from Seattle to Boston on Wednesday is ambiguous in the sense
that the date on Wednesday can either belong to the action of booking it, or to the
date of the flight. With this example one needs a structured representation where
booking is structured into an action and a date and is therefore dependent on two
segments.
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3 Overview of language modeling techniques

When the generation process between semantic representations and word sequences
is modeled in a more sophisticated way more complex models can be obtained. More
complex models introduce dependencies between phrases and multiple semantic states.
The above model can be used on top of a language model that is used for speech
recognition, or it can be integrated into speech recognition. The integration is defined
as

Definition 3.8 Written language understanding model integrated into ASR

M̂ = arg max
M

(∑
W

P (A |W,M)P (W |M)P (M)

)

≈ arg max
M

(
max

W
P (A |W )P (W |M)P (M)

)
which results in one full approach for SLU. Thereby the generic LM used in ASR is
replaced by the language understanding model which consists of a lexicalization model
and a semantic prior. In this way a link between acoustic observations A and meaning
representations M is established.

3.3 Topic models

3.3.1 Latent semantics analysis (LSA) based LM

LSA-based language models are extensively discussed in Chapter 4. A detailed de-
scription of the application of LSA for language modeling can be found there. Here
some basic concepts underlying these models are presented.

The concept of Latent Semantic Indexing (LSI) was originally used in IR to de-
fine similarities between queries and documents (Deerwester et al., 1990). Bellegarda
(2000b) first used these concepts for language modeling.

In LSA or LSI one first creates a word-by-document co-occurrence matrix. This
matrix is then reduced by Singular Value Decomposition (SVD) (Golub and Van Loan,
1989, p. 70). The dimensions of this new reduced space are assumed to cover the latent
structure of the word-document space. Using these reduced matrices one can define
word-word, document-document and word-document similarities. For the application
to language modeling it is necessary to introduce the concept of a pseudo-document
that represents the history of words seen so far.

A basic property of SVD is that it finds the optimal projection of a matrix to a
low-dimensional space. SVD relies on a theorem from linear algebra that states that
any m×n matrix W can be decomposed into a product of three matrices U , S and V

Definition 3.9 Singular value decomposition

W = Um×nSn×nV T
n×n
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such that U and V are orthogonal. This means that UT U = V T V = I where I is
the n× n identity matrix and T denotes matrix transposition. S is a diagonal matrix
that contains the singular values. If the matrix W has rank k, S contains k non-zero
singular values. This means that the matrices can be reduced to k dimensions such
that the following equation holds.1

Definition 3.10 Non-zero singular value decomposition

W = Um×kSk×kV
T
n×k

It is possible to further reduce the dimension of the matrices to r (r < k), since the
order-r SVD of W given by

Definition 3.11 Order-r singular value decomposition

W ≈ Ŵ = Um×rSr×rV
T
n×r

is the best rank-r approximation to W . Compared to another matrix A of rank r, Ŵ
is always closer to the original matrix W than A.

The words and documents are then represented in this common latent seman-
tic space. The pseudo-document representing the word history can be constructed
from the word representations. The cosine similarity (Definition 4.8) between pseudo-
document and word vector defines a semantic similarity between a word and its history.

A sample co-occurrence matrix for the vocabulary

V = {orange, banana,melon, apple, windows}

and the six documents d1-d6 is given in Table 3.1. The example given here is an
adaptation from Manning and Schütze (1999, p. 558). A number ki,j in the matrix
means that the word in row i appeared k times in document dj . In a realistic language
model the number of words and documents will be > 10, 000. In Chapter 4 the raw
counts are transformed according to Definition 4.1. Here this transformation is skipped
since only content words are considered and the document length is not relevant.

The reduced SVD decomposition of the co-occurrence matrix W is given in Table 3.2-
3.4. U is the word matrix, S is the singular value matrix, and V is the document matrix
where W ≈ Ŵ = U5×2S2×2V

T
6×2. The three matrices are reduced to two dimensions. A

word is represented by the vector uiS and a document is represented by the vector vjS.
Document-document and word-word similarities are defined as the cosine similarities
between these vectors (Definition 4.6 and 4.7).

1If the columns of the matrix are conceived as vectors, the rank tells us how many linearly independent
vectors there are.
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word d1 d2 d3 d4 d5 d6

orange 1 0 1 0 0 0
banana 0 1 0 0 0 0
melon 1 1 0 0 0 0
apple 1 0 0 1 1 0
windows 0 0 0 1 0 1

Table 3.1: Co-occurrence matrix W .

If word-word and document-document similarities of the original matrix W and the
SVD-reduced representations are considered, it becomes clear why we think that the
SVD-reduced space covers the “latent” semantic dimensions of the word-document
space.

word dim1 dim2

orange 0.44 −0.29
banana 0.12 −0.33
melon 0.47 −0.51
apple 0.70 0.35
windows 0.26 0.64

Table 3.2: U

2.16 0
0 1.59

Table 3.3: S

doc. dim1 dim2

d1 0.74 −0.28
d2 0.27 −0.52
d3 0.20 −0.18
d4 0.44 0.62
d5 0.32 0.21
d6 0.12 0.40

Table 3.4: V
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Figure 3.1: Original word similarities.
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Figure 3.2: “Latent” word similarities.

Figure 3.1 shows the word-word similarities given by the cosine similarities of word
vectors in the original co-occurrence matrix W . Figure 3.2 shows the word-word
similarities given by the cosine similarities of the word representations uiS in the
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3.3 Topic models

latent semantic space. It can be seen that the “latent” semantic space consists of two
word clusters, one around the meaning “fruit” and one around the meaning “operating
systems”. It also makes words similar (banana/orange) that do not appear in the same
document. This similarity cannot be derived from the vectors in the original space.

For document-document similarities shown in Figure 3.3 and 3.4 one can see that
documents are similar in the “latent” semantic space that do not have words in com-
mon. These similarities cannot be derived directly from the original space. Further-
more one can see the clustering of the document space into two clusters d1-d3 and
d3-d6.
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Figure 3.3: Original document similari-
ties.
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Figure 3.4: “Latent” document similari-
ties.
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Figure 3.5: Original word-document simi-
larities.
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Figure 3.6: “Latent” word-document sim-
ilarities.

A final advantage of LSA is that it allows for a comparison of words and docu-
ments. This is especially useful for language modeling where one wants to predict a
word from a context/document. The cosine similarity is defined between the word
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vector uiS
1
2 and the document vector vjS

1
2 (Definition 4.8). The reason for this

slightly different representation of words and documents, compared to word-word and
document-document similarities is explained in Section 4.2.3.

The only way to derive word-document similarities from the original co-occurrence
matrix W is to take the matrix itself. A word is then similar to a document if it appears
in the document. The similarity matrix derived in this way is shown in Figure 3.5.
In the LSA space however similarities can be derived between words and documents,
although the word never appeared in the document. The word-document similarities
in the “latent” semantic space are shown in Figure 3.6.

3.3.2 Probabilistic latent semantic analysis (PLSA)

PLSA models derive the probabilities between a word and a document or history of
words directly, without estimating a similarity first. These models were first applied
by Gildea and Hofmann (1999) to language modeling. The basic idea underlying these
models is to introduce a latent topic variable.

For estimating the joint probability of a word w, document d, and topic t, one can
use the multiplication rule to derive the joint document, word and topic probability.

Definition 3.12 Joint document, word and topic probability

P (d, w, t) = P (d)P (t | d)P (w | t, d)

With the additional assumption that a word is only dependent on the topic this
becomes

Definition 3.13 Joint document, word and topic probability (word-topic dependence)

P (d, w, t) = P (d)P (t | d)P (w | t) .

In the same way one can derive

Definition 3.14 Joint topic, document and word probability

P (t, d, w) = P (t)P (d | t)P (w | d, t) = P (t)P (d | t)P (w | t)

which is more symmetric because d and w are only dependent on t (Hofmann, 1999).
The graphical model (Cowell, 1998) representations of the models taken from Hofmann
(1999) are given in Figure 3.7.

When marginalizing over the variable t one gets the final definition of the PLSA
model, with t as the latent topic variable. For Definition 3.14 this yields
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d t w

d t w

Figure 3.7: Graphical model representation of PLSA models.

Equation 3.1 Joint document and word probability

P (d, w) =
∑
t∈T

P (t)P (d | t)P (w | t) .

Then the model can be estimated with the Expectation Maximization (EM) algo-
rithm (Dempster et al., 1977). The expectation step of the EM algorithm, the posterior
probabilities for the latent topic variable t are estimated as

Equation 3.2 Posterior topic probability

P (t | d, w) =
P (t, d, w)
P (d, w)

.

Using Definition 3.14 and Equation 3.1 this expands to the E-step equation

Equation 3.3 E-step equation for posterior topic probability

P (t | d, w) =
P (t)P (d | t)P (w | t)∑

t′∈T P (t′)P (d | t′)P (w | t′)
.

The maximization of the parameters P (w | t), P (d | t), and P (t) in the maximization
step (M-step) is given by the following and similar formulae for the other parameters
(Hofmann, 1999).

Equation 3.4 M-step equation for P (w | t)

P (w | t) ∝
∑
d∈D

n(d, w)P (t | d, w)

where ∝ signifies that the formula has to be normalized over all words and n(d, w) are
the counts for word w in document d.
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To be applicable to language modeling one has to introduce a similar concept as
the pseudo-document for LSA models, to be able to predict a word given the history
of previous words. If the document variable d is replaced by the history variable h in
Definition 3.13 this yields

Equation 3.5 Joint history, word and topic probability

P (h, w, t) = P (h)P (t | h)P (w | t).

With marginalization over t and the multiplication rule one gets

Equation 3.6 Joint history and word probability

P (h)P (w | h) = P (h, w)

=
∑
t∈T

P (h)P (t | h)P (w | t)

= P (h)
∑
t∈T

P (t | h)P (w | t)

The conditional probability of a word given its history is thereby given by (Gildea
and Hofmann, 1999)

Definition 3.15 PLSA for language modeling

P (w | h) =
∑
t∈T

P (t | h)P (w | t)

such that P (h) does not have to be estimated. The parameters P (t | h) have to
be computed online as the length of the history increases. Therefore an online EM
algorithm as discussed in Neal and Hinton (1998) can be used.

3.4 WordNet-based LM

Several WordNet-based LMs are discussed in Chapter 5. These models are based
on measures of lexical semantic relatedness. ‘Semantic relatedness’ is here used as a
general term, which can be divided into ‘semantic similarity’ and ‘semantic distance’.
If a word w1 is semantically closer to w2 than to w3 the similarity to w2 will be
higher in a similarity measure and the distance to w2 will be smaller in a distance
measure. Pedersen et al. (2004) uses the terms ‘semantic similarity’ and ‘semantic
relatedness’ for measures within and across POS boundaries, respectively. A wide
variety of applications like word sense disambiguation, information extraction, and
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word prediction as well as many relatedness measures are described in Budanitsky
and Hirst (2001).

Kozima and Ito (1995) define the distance between two words in a given context.
For the definition of the basic semantic distance a semantic network is constructed
from the Longman Dictionary of Contemporary English (LDOCE). The nodes of the
network are the words in the dictionary. A link between two nodes w1 and w2 is
inserted if w1 appears in the definition of w2.

As Budanitsky and Hirst (2001) showed this definition can be easily extended such
that it can be applied to a word and a set of words in a given context.

Definition 3.16 Word-sentence distance

distword(w,S,C) =
1
| S |

∑
w′∈S

dist(w,w′, C)

Such a definition is useful in cases where the sentence or utterance context S contains
additional information to the context C. Suppose that the semantic similarity between
‘fish’ and ‘school’ and other words in C shall be computed. This similarity will be
higher if the sentence contains ‘coral reef’, because in this case it can be assumed that
‘school’ is used in the seldom used sense of “large group of fish”. This means that the
similarity between ‘fish’ and ‘school’ will be lower than the similarity between ‘fish’
and ‘school’ in the context of ‘coral reef’

Table 3.5 shows example word-context distances distctxt(w,C) given by Kozima and
Ito (1995) which are defined as the sum of distances dist(w,w′, C) of all words w′ in
the context. There are two senses of the word ‘tour’ in this example (“tour1” and
“tour2”).

w distctxt(w,C)
“bus1” 0.100833
“scenery1” 0.112169
“tour2” 0.122133
“tour1” 0.128796
“abroad1” 0.155860
“tourist1” 0.159336

Table 3.5: 6 highest word-context distances for C = {bus, scenery, tour}.

Since the lexical semantic relatedness measures used in this work give a definition
of the semantic relatedness between two words (rel(w,w′)) the relatedness of a word
and a context can be defined directly as
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Definition 3.17 Word-context relatedness

relword(w,C) =
1
| C |

∑
wi∈C

rel(w,wi) .

Starting from this basic definition of semantic relatedness between two concepts,
more complex relatedness measures can be defined. WordNet-based relatedness mea-
sures are either graph-based, or text-based, or both. Examples of all three types of
measures are given in Section 5.2.

3.4.1 Graph-based WordNet relatedness measures

With graph-based relatedness measures the relatedness between two words or senses
is computed by their position in the WordNet graph. The shortest path between two
senses is one possible distance measure. The longer the path the longer the distance
between the senses.

Another type of measure computes information content from a corpus, which assigns
nodes that are lower in the hierarchy, a higher information content. Then the infor-
mation content of the Least Common Subsumer (LCS) of two senses A and B, which
is defined as the most specific concept that is an ancestor of both A and B (Pedersen
et al., 2004) is taken as the similarity between two senses (Resnik, 1995).

The main disadvantage of these models is that they cannot be applied across POS
boundaries in an intuitive way. Of course there is the possibility to simply connect
the top nodes of say the verb and noun hierarchy. Chapter 5 shows that in language
modeling it is best to use only these measures for nouns.

3.4.2 Text-based WordNet relatedness measures

Text-based relatedness measures are defined on the glosses/definitions of word senses.
The WordNet (Fellbaum, 1998, p. 8) graph is organized into synonym sets that are
linked to another as shown in Figure 5.1. Additionally WordNet contains a definition
for each sense of a word. For the senses of the noun ‘gold’ these are

(3.1) 1. gold – coins made of gold

2. amber, gold – a deep yellow color; an amber light illuminated the room; he
admired the gold of her hair

3. gold, Au, atomic number 79 – a soft yellow malleable ductile (trivalent
and univalent) metallic element; occurs mainly as nuggets in rocks and
alluvial deposits; does not react with most chemicals but is attacked by
chlorine and aqua regia

4. gold – great wealth; Whilst that for which all virtue now is sold, and
almost every vice–almighty gold–Ben Jonson
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3.5 Maximum entropy LM

5. gold – something likened to the metal in brightness or preciousness or
superiority etc.; the child was as good as gold ; she has a heart of gold

Let Xi and Xj be the set of content words that are contained in the definition of a
sense of wi and wj , respectively. Then the simplest similarity metric is the so called
‘matching coefficient’ given by Xi ∩Xj . By normalizing over the number of words in
the glosses and applying certain smoothing functions one can define more similarity
metrics based on the common words of the glosses.

Intuitively it is clear that an n-phrase-overlap is more significant than a n−1-phrase-
overlap. Xi and Xj have an n-phrase-overlap if they have a common phrase of length
n. Higher phrase-overlaps should produce higher similarities. This is one idea that
can be taken into account in an adapted text-based measure (Banerjee and Pedersen,
2003).

3.4.3 Hybrid WordNet relatedness measures

Hybrid semantic relatedness measures like the one proposed in Banerjee and Pedersen
(2003) use information from the WordNet graph and the glosses/definitions.

If the similarity between two senses has to be estimated, a text-based word or
phrase-overlap measure is used that additionally takes neighboring nodes in the graph
(graph-based) into account. So not only the phrase-overlap of the two sense definitions
is taken into account, but also the phrase-overlaps of the neighboring sense definitions.

Thereby it can be used across POS boundaries and take into account information
that is contained in the WordNet graph. It is also possible to train the measures for
different types of relations in WordNet and add weights for relation types.

The advantage of text-based and hybrid measures is that they can be applied across
POS boundaries. Chapter 5 shows that it is best to use only hybrid measures for verbs
and adjectives in language modeling.

3.5 Maximum entropy LM

The maximum-entropy framework was first applied to language modeling by Della Pietra
et al. (1992) and adopted by Rosenfeld (1994, 1996). Conditional maximum entropy
models have the form

Definition 3.18
P (w | h) =

1
Z(h)

exp(
∑

i

λifi(w, h))

where fi(w, h) is a discrete or continuous feature defined for a word and its history,
Z(h) is a normalization term, and λi are the parameters. These models can also be
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3 Overview of language modeling techniques

defined as whole-sentence models where efficient estimation and sampling methods are
essential for model estimation (Schofield, 2006).

With these kinds of models it is possible to incorporate multiple types of linguistic
features, like n-gram features and LSA-features (Deng and Khudanpur, 2003) into a
language model. The advantage of the maximum entropy language modeling frame-
work is that any type of feature can be incorporated. Another viewpoint on the max-
imum entropy framework is to see it as a smoothing framework that models unseen
data using a minimal number of constraints given by the data seen so far.

The main challenge for maximum entropy language modeling in our view is to find
good sets of features and good feature combinations such that the combination of
features increases the model performance. Deng and Khudanpur (2003) showed how
n-gram features and LSA features can be combined and that this combination can
improve over an n-gram language model on conversational speech data in terms of
perplexity and WER.

Features can either have discrete or continuous values. As an LSA feature one could
take the cosine similarity between words and pseudo-document histories in a training
corpus defined as

Definition 3.19

fLSA(w, h) = Ksim(w, h) =
uSvT

||uS
1
2 || · ||vS

1
2 ||

as suggested by Deng and Khudanpur (2003). uS
1
2 represents w and vS

1
2 represents

h. Of course the pseudo-document history h is different for each word in the training
corpus such that this method – taken literally – yields as many parameters as words
in the training corpus. While it is possible to have a separate parameter for each
n-gram feature for example, it is necessary to perform some parameter tying in the
case of LSA features. Otherwise a separate parameter would be needed for each word-
history combination. Parameter tying means here that word-history combinations are
grouped together, such that only one parameter per group is needed.

One possibility for parameter tying suggested by Deng and Khudanpur (2003) is to
use a partitioning of the document space achieved through clustering. If the document
space has dimension r and we have some clustering of the Rr space such that h′

represents one cluster in this clustering, a binary LSA feature can be defined as

Definition 3.20

f̂LSA(w, h) =

{
1 if Ksim(w, h′) > η,

0 otherwise.

where h′ is the cluster center that is closest to the pseudo-document history h.
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3.6 Discussion

The usefulness of this method lies in the possibility to perform the clustering on
the LSA space using the cosine document-document similarity (Definition 4.7) and
standard clustering algorithms like k-means clustering (MacQueen, 1967). To also
cover short-term syntactic information, one has to combine the long-term LSA features
with n-gram or similar features.

3.6 Discussion

The main reason to choose LSA and WordNet-based models for this thesis is their
ability to include a longer history than n-gram models and to go beyond the sentence
context. All other models except PLSA models can either not include a longer history,
or they do not go beyond the sentence context.

n-gram models (word-based, class-based, or POS-based) cannot include a long his-
tory and cannot go beyond the sentence context. Syntactically or semantically struc-
tured LMs can include a longer history but cannot go beyond the sentence context.

LSA, PLSA, and WordNet-based model can include a long history and can go beyond
the sentence context. We think that these two properties are important in language
modeling for meetings. PLSA models are not considered since they are similar to
LSA models. In Chapter 4 and 5 we will investigate if the models can improve ASR
for meetings by using a longer history than n-gram models and reaching beyond the
sentence context.
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4 Latent semantic analysis (LSA) based language models in
automatic speech recognition (ASR) for multi-party
meetings

43. Man kann für eine große Klasse von Fällen der Benützung des Wortes
‘Bedeutung’ - wenn auch nicht für alle Fälle seiner Benützung - dieses Wort
so erklären: Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache
(Wittgenstein, 1984, p. 262).1

4.1 Introduction

This chapter2 contains a description of work on Latent Semantic Analysis (LSA) based
language modeling in Automatic Speech Recognition (ASR) for multi-party meetings.
Multi-party meetings involve two or more speakers that are engaged in a more or
less interactive conversation. Examples of multi-party meetings are regular meetings,
talks, and discussions. In this work regular meetings are used as experimental data.

Word-based n-gram models are a popular and fairly successful paradigm in lan-
guage modeling. With these models it is however difficult to model long distance
dependencies which are present in natural language (Chelba and Jelinek, 1998).

LSA defines a semantic similarity space using a training corpus. This semantic sim-
ilarity can be used for dealing with long distance dependencies, which are an inherent
problem for traditional word-based n-gram models. Since LSA models adapt dynami-
cally to topics, and meetings have clear topics, this thesis conjectures that these models
can improve speech recognition accuracy on meetings.

LSA maps a corpus of documents onto a semantic vector space. Long distance
dependencies are modeled by representing the context or history of a word and the
word itself as vectors in this space. The similarity between these two vectors is used to
predict the word given the context. Since LSA models the context as a bag-of-words
it has to be combined with n-gram models to include word-sequence statistics of the
short-span history. Language models that combine word-based n-gram models with
LSA models have been successfully applied to conversational speech recognition (Deng
and Khudanpur, 2003) and to the Wall Street Journal recognition task (Bellegarda,
2000a,b). In this chapter the LSA approach is applied to ASR for multi-party meetings.

143. For a large class of cases – though not for all – in which we employ the word ‘meaning’ it can
be defined thus: the meaning of a word is its use in the language (Wittgenstein, 2001, p. 18).

2Parts of the content of this chapter were first published in Pucher and Huang (2005); Pucher et al.
(2006a,b).
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4 Latent semantic analysis (LSA) based language models

Furthermore a method is provided to combine multiple LSA models, such that the same
training data that is used for the n-gram models can be used.

Due to the sparseness of available data for meeting language modeling it is important
to combine meeting LSA models that are trained on relatively small corpora with
background LSA models that are trained on larger corpora. In this case the meeting
domain is the adaptation domain (Bellegarda, 2004) and there are multiple background
domains from broadcast news to web data (Table 4.7).

This chapter presents perplexity and Word-Error-Rate (WER) results for LSA mod-
els for meetings. Results for models trained on a variety of corpora including meeting
data and background domain data are presented. Furthermore combinations of mul-
tiple LSA models and word-based n-gram models are investigated.

It is shown that meeting and background LSA models can improve over the baseline
n-gram models in terms of perplexity and that some background LSA models can
significantly improve over the n-gram models in terms of WER. For the combination
of multiple LSA models no improvement can be reported.

Additionally to perplexity and WER results an extensive analysis of LSA models is
conducted. This analysis covers the optimization of LSA model parameters necessary
for the interpolation of multiple LSA models as well as a comparison of LSA and
cache-based models. This comparison shows that the former contain more semantic
information than is contained in the repetition of word forms alone.

4.2 LSA-based language models

4.2.1 Constructing the semantic space

In LSA first a training corpus is encoded as a word-document co-occurrence matrix
W (using weighted term frequency). This matrix has high dimension and is highly
sparse. Let V be the vocabulary with |V| = M and T be a text corpus containing N
documents.

Let cij be the number of occurrences of word i in document j, ci the number of
occurrences of word i in the whole corpus, that is ci =

∑N
j=1 cij , and cj the number

of words in document j, that is cj =
∑M

i=1 cij . The elements of W are given by

Definition 4.1 Encoding of word-document co-occurrence matrix

[W ]ij = (1− εwi)
cij

cj
.

cij

cj
is the ratio of the count of a word in a document cij and the total number of

words in that document cj . In this way a given count for a word gives a higher weight
in a smaller document. So the length of a document is taken into account.
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4.2 LSA-based language models

The informativeness of a word shall also be taken into account. Content words are
more informative than function words. From a content word it should be possible to
make a guess on the topic of a document. Since only counts derived from a corpus
and no prior linguistic knowledge is used, the distinction between content and function
words depends on the corpus. A content word is a word that only appears in some
documents, while a function word appears in many or most documents. The un-
informativeness εwi of a word wi is defined as

Definition 4.2 Word un-informativeness (entropy)

εwi = − 1
log2 N

N∑
j=1

cij

ci
log2

cij

ci
.

εw is used as a short-hand for εwi . Informative words have a low value of εw. For
words appearing everywhere in the corpus cij

ci
is almost uniform and therefore εw is

high and close to 1. For words that appear in a more content-word like fashion the
value is lower.

Then a semantic space with much lower dimension is constructed using Singular
Value Decomposition (SVD) (Deerwester et al., 1990; Berry, 1993).

Definition 4.3 Singular value decomposition

W ≈ Ŵ = USV T

For some order r � min(m,n), m is the number of words, n is the number of docu-
ments, U is a m × r left singular matrix, S is a r × r diagonal matrix that contains
r singular values, and V is a n × r right singular matrix. The vector uiS represents
word wi, and vjS represents document dj .

4.2.2 Pseudo-document representation

The concept of a pseudo-document d̃t−1 using the word vectors of all words preceding
wt (w1, . . . , wt−1) is needed because the model is used to compare words with word
histories. It is very likely that these histories are not present in the training corpus.
Therefore the histories are encoded as pseudo-documents. In the construction of the
pseudo-document a decay parameter δ < 1 is included that renders words closer in the
history more significant.

As a matrix column that can be added to the matrix Ŵ the pseudo-document is
defined as

Definition 4.4 Inductive definition of pseudo-document

d̃t =
t− 1

t
d̃t−1 +

1− εwt

t
ewt
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4 Latent semantic analysis (LSA) based language models

where ˜ denotes that the document is not in the original matrix and ewt is a word
selection vector with 0 at all places except for the position wt where it is 1. Here it is
desired to find an expression of the pseudo-document that is equal to the representation
of the other documents in the semantic space.

These documents are represented as vtS, so ṽtS is the desired vector. Since ṽtS is
not in the original matrix3 it has to be constructed from the word vectors ui of the
matrix U . Since it is known that ṽtS = d̃

T
t U , this fact can be used in conjunction

with Definition 4.4 to find the desired pseudo-document representation.

Lemma 4.1 Representation of pseudo-document in semantic space

ṽtS =
t− 1

t
ṽt−1S +

1− εwt

t
uwt

Proof 4.1

ṽtS = d̃
T
t U

= (
t− 1

t
d̃t−1 +

1− εwt

t
ewt)

T U (Definition 4.4)

=
t− 1

t
d̃

T
t−1U +

1− εwt

t
eT
wt

U

=
t− 1

t
ṽt−1S +

1− εwt

t
uwt

Now the already mentioned decay δ < 1 has to be added that is applied to all words
except the current word. So the final definition of the pseudo-document is

Definition 4.5 Decaying representation of pseudo-document

ṽtS = δ
t− 1

t
ṽt−1S +

1− εwt

t
uwt .

The optimization of the decay parameter δ is described in Section 4.4.5. This decay
parameter can be set according to the task while t−1

t , which also has a decaying effect
defines a fixed sequence of values.

4.2.3 LSA probability

In this semantic space one can define word-word, document-document, and word-
document similarities. Word-word similarities can be used for the clustering of words,
document-document similarities can be used for document clustering, and similarities
between words and documents can be used in language modeling. The cosine similarity
between words is defined as

3To denote this fact the ˜ notation is used.
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4.2 LSA-based language models

Definition 4.6 Cosine similarity between words

Ksimword(wi, wj) =
uiS

2uT
j

||uiS|| · ||ujS||

which is simply the cosine of the angle between the vectors uiS (representing wi) and
ujS (representing wj). (uiS)(ujS) = uiS

2uT
j since vS = SvT for a diagonal matrix

S and a vector v. The cosine similarity measures how close the two words are in this
space.

The matrix ŴŴ T characterizes all co-occurrences between words. Therefore the
association between two words can be derived from the (i, j) cell of this matrix. This
cell is equal to the dot product (uiS)(ujS).

Theorem 4.1 Word association space

ŴŴ T = USUS

Proof 4.2

ŴŴ T = USV T (USV T )T (Definition 4.3)

= USV T (US(V T ))T (matrix associativity)

= USV T (V T )T ST UT ((US)T = ST UT )

= USV T V ST UT ((V T )T = V )

= USV T V SUT (ST = S for diagonal matrices)

= USSUT (V T V = I for orthogonal matrices)

= USUS (SUT = US for diagonal matrices)

In the same way one can show that Ŵ T Ŵ = V SV S. Between documents the cosine
similarity is therefore defined in the same way:

Definition 4.7 Cosine similarity between documents

Ksimdoc(di, dj) =
viS

2vT
j

||viS|| · ||vjS||

The cosine similarity between words and documents, which is used for predicting a
word given a document context, is defined slightly different as

Definition 4.8 Cosine similarity between words and documents

Ksim(wi, dj) =
uiSvT

j

||uiS
1
2 || · ||vjS

1
2 ||

.
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4 Latent semantic analysis (LSA) based language models

The idea behind this definition is that the relation between a word wi and a docu-
ment dj is given by the (i, j) cell of the matrix Ŵ . Since Ŵ = USV T this cell value
is equal to the dot product of uiS

1
2 and S

1
2 vT

j , which is equal to the dot product of

uiS
1
2 and vjS

1
2 . Therefore the similarity of a word and a document is defined as the

cosine similarity between these two vectors.
Since a probability is needed for the integration with conditional n-gram models, this

similarity is converted into a probability by normalizing it. Because this conversion is
seen as a weakness of LSA models, other methods have been proposed that derive the
probabilities directly (Gildea and Hofmann, 1999). According to Coccaro and Jurafsky
(1998), the small dynamic range of the similarity function is extended by introducing
a similarity exponent parameter γ. Our experiments also show that the optimization
of γ can lower the perplexity. In Section 4.4.4 the effect of this parameter is analyzed.

The conditional probability of a word wt given a pseudo-document d̃t−1 is defined
as

Definition 4.9 LSA probability

PLSA(wt|d̃t−1) =
[Ksim(wt, d̃t−1)−Kmin(d̃t−1)]γ∑
w[Ksim(w, d̃t−1)−Kmin(d̃t−1)]γ

where Kmin(d̃t−1) = minw K(w, d̃t−1) to make the resulting similarities non-negative.
A small offset is added to Ksim(wt, d̃t−1) such that no zero probabilities are computed
in the case that Ksim(wt, d̃t−1) = Kmin(d̃t−1)

4.2.4 Combining LSA and n-gram models

In the adaptation of statistical language models one tries to find a robust estimate
of the language model probability for sequences of words given a history of words
(Bellegarda, 2004). For LSA-based models this estimate is a combination of LSA and
n-gram models. The long-term history is covered by the LSA model, the short-term
word sequence is covered by the n-gram model.

For the interpolation of the word-based n-gram models and the LSA models the
methods defined in Table 4.1 are used. λ is a fixed constant interpolation weight, and
∝ denotes that the result is normalized by the sum over the whole vocabulary. λw is
a word-dependent parameter defined as (Deng and Khudanpur, 2003)

Definition 4.10 Word-dependent λ

λw =
1− εw

2
.
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4.2 LSA-based language models

λw is a short-hand for λwi . This definition ensures that the n-gram model gets at least
half of the weight. λw is higher for more informative words.

Model Definition
n-gram (baseline) Pn-gram

Linear interpolation (LIN) ηPLSA + (1− η)Pn-gram

Similarity modulated
n-gram interpolation ∝ (Ksim −Kmin)Pn-gram

(SIMMOD)
Information weighted

geometric mean ∝ P λw
LSAP 1−λw

n-gram

interpolation (INFG)

Table 4.1: Interpolation methods.

Three different methods (Coccaro and Jurafsky, 1998; Deng and Khudanpur, 2003)
for the interpolation of n-gram models and LSA models are applied. The “information
weighted geometric mean”, the “similarity modulated n-gram” and simple “linear
interpolation”. The “information weighted geometric mean” interpolation represents
a log-linear interpolation (Klakow, 1998) of normalized LSA probabilities and the
standard n-gram, weighted by λw. The “similarity modulated n-gram” interpolation
uses Ksim and Kmin directly, without normalizing first.

4.2.5 Combining LSA models

In a further adaptation multiple LSA models are interpolated. The models are thereby
divided into application domain models, which is in our case the meeting model and
the background models.

For the combination of LSA models two different approaches are defined here. The
first approach is a straightforward generalization of the linear interpolation for multiple
LSA models with optimized ηi where ηn+1 = 1− (η1 + . . . + ηn):

Definition 4.11 Linear interpolation

Plin = η1PLSA1 + . . . + ηnPLSAn + ηn+1Pn-gram

The second approach is a generalization of the INFG Interpolation with optimized
θi where λ

(n+1)
w = 1− (λ(1)

w + . . . + λ
(n)
w ). An INFG type of interpolation was already

used by Coccaro and Jurafsky (1998); Deng and Khudanpur (2003) for interpolation
of n-gram and LSA models. Here we generalize this method for multiple LSA models
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4 Latent semantic analysis (LSA) based language models

which also results in a generalization of the word-dependent parameters. Thereby
global model parameters can be trained for LSA models and the n-gram model.

Definition 4.12 INFG interpolation

Pinfg ∝ P λ
(1)
w θ1

LSA1
. . . P λ

(n)
w θn

LSAn
P (1−(λ

(1)
w +...+λ

(n)
w )θn+1)

n-gram

The parameters θi have to be optimized since the λ
(k)
w depend on the corpus, such

that a certain corpus can get a higher weight because of a content-word-like distribu-
tion of w, although the whole data does not well fit the meeting domain. One such
optimization algorithm will be discussed later in Section 4.2.7. In general the λw val-
ues are higher for the background domain models than for the meeting models. But
taking the n-gram mixtures as an example the meeting models should get a higher
weight than the background models. For this reason the λw of the background models
have to be lowered using θ.

To ensure that the n-gram model gets a certain part κ of the distribution, λ
(k)
w is

defined for word w and LSA model LSAk as

Definition 4.13

λ(k)
w =

1− ε
(k)
w

n
1−κ

where 1 − ε
(k)
w is the informativeness of word w in LSA model LSAk as defined in

(4.2) and n is the number of LSA models. This is a generalization of definition (4.10).
Through the generalization it is also possible to train κ, the minimum weight of the
n-gram model.

For the INFG interpolation the model parameters θi, the weight of the n-gram model
κ, and the γ exponent for each LSA model have to be optimized. All parameters are
optimized using the gradient descent algorithm (Section 4.2.7).

4.2.6 Perplexity

The performance of a statistical language model is determined by the perplexity of
the model given some test data. The perplexity is defined as 2H(p,m) using the cross-
entropy H(p, m) of a language model m and the true probability distribution p of a
language L, according to which sequences of words are drawn. The cross-entropy is
defined as

Definition 4.14 Cross entropy 1

H(p, m) = − lim
n→∞

1
n

∑
W∈L

p(w1, . . . , wn) log2 m(w1, . . . , wn)
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where W are the sequences of length n in the language L (Jurafsky and Martin, 2000,
p. 227). To compute this, one would have to know the true probability distribution p
of the language L. According to the Shannon-McMillan-Breiman theorem (Cover and
Thomas, 1991, p. 475) for stationary and ergodic processes this formula is equivalent
to

Definition 4.15 Cross entropy 2

H(p, m) = lim
n→∞

− 1
n

log2 m(w1, . . . , wn) .

Since H(p), the cross-entropy of the true distribution is always smaller than H(p, m)
the performance of a language model can be measured by its closeness to the true
cross-entropy. In practice, sequences of infinite length are not encountered. So the
cross-entropy and perplexity of a model is always approximated and restricted to the
“perplexity of a test set”.

4.2.7 Perplexity optimization with gradient descent

“Gradient descent” is an algorithm for approximating the local minimum of a function.
For this work the perplexity of combined models shall be optimized by optimizing the
ηi’s in Definition 4.11 and the θi’s in Definition 4.12. The exponent γ in Definition 4.9
and the decay parameter δ in Definition 4.5 are optimized using the same method.

The functions to optimize are

flin(LSA1, . . . ,LSAn, n-gram, η1, . . . , ηn)

finfg(LSA1, . . . ,LSAn, n-gram, θ1, . . . , θn+1)

where the η value for the n-gram is given by 1− (η1 + . . . + ηn). flin is the perplexity
of the linearly interpolated models LSA1, . . . ,LSAn, n-gram using the interpolation
parameters η1, . . . , ηn, 1−(η1+. . .+ηn). finfg is the perplexity of the INFG interpolated
models LSA1, . . . ,LSAn, n-gram using the interpolation parameters θ1, . . . , θn+1. The
models are not changed during optimization, so the functions can be written as

flin(η1, . . . , ηn)

finfg(θ1, . . . , θn+1)

Since the gradient is needed for this method, which involves the derivative of the
functions that cannot be determined analytically, it is necessary to approximate the
derivative of the functions. The iteration of the θi is defined as follows:4

4The optimization of all other parameters is done in the same way.
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Definition 4.16 Gradient descent

θij+1 = θij − αf ′(θij )

α is the step size. θij is the value of θi at step j. If f is ascending in the point
θij , then the derivative f ′(θij ) is positive and θij+1 decreases, otherwise it increases
until the function converges, provided that α is chosen small enough. To estimate the
function finfg (or the function flin) one has to introduce another parameter β, the step
width that is used to compute the steepness of finfg for some θi where the other θi’s
are fixed.

Definition 4.17 Approximation of perplexity function gradient

f ′infg(θi, β) =
finfg(θi)− finfg(θi + β)

β

Algorithm 4.1 Perplexity optimization
Optimize-Perplexity(finfg(θ), α, β)
1 Θ← θ pold ← 0 pnew ← 1
2 while | pold − pnew |> 0.1
3 do for i← 1 to n + 1
4 do Θi ← θi − α f ′infg(θi, β)
5 pold ← finfg(θ)
6 pnew ← finfg(Θ)
7 θ ← Θ
8 return θ

Here again β has to be small enough. The experiments in Section 4.4.2 show that it
is sufficient to choose a value for the parameter between 0.05 and 0.1. The assumption
underlying this approximation is that the function is a straight line between θi and
θi + β. If this assumption is false and there is a local minimum between θi and θi + β
this local minimum is missed.

Algorithm 4.1 shows the complete algorithm for the optimization of the θ’s, that
converges if the perplexity difference is below 0.1. Using this method the model pa-
rameters γ and δ, the interpolation parameters η and θ, and the weight of the n-gram
model κ are optimized.

4.2.8 Out-of-vocabulary (OOV) words

LSA-based language models are trained on a corpus that is divided into documents.
A document is considered as a bag-of-words by the model. Since word order is of

44



4.3 Semantics of LSA-based language models

high importance in languages like English, for these languages these models have to
be combined with models that also consider word ordering, like word-based n-gram
models or another kind of structured language model.

If the models are trained on the same corpus they can use the same vocabulary.
When interpolating multiple LSA models with an n-gram model, the n-gram model
is trained on all the data and interpolated with different LSA models that are trained
on parts of the data. Then it happens that the n-gram model vocabulary contains a
word that is missing in some of the LSA model vocabularies.

A special event that has to be included in the n-gram vocabulary to define the
probabilities over sentences and not only over sequences of a certain length, is the
end-of-sentence symbol <\s> (Chen and Goodman, 1998). It is not clear how to
determine the probability of this event using an LSA model. Since this model rests on
a bag-of-word assumption it predicts the end of a sentence from the average number
of sentences in a corpus, and does not use any word ordering information. In addition
it lowers the probability of the end-of-sentence event compared to the n-gram model,
a prediction where the n-gram model is especially useful. For these reasons the end-
of-sentence event is not included in the LSA vocabulary and the n-gram alone is used
for predicting the end of a sentence.

4.3 Semantics of LSA-based language models

The topic of the ‘semantics’ of LSA models has already been studied by multiple
authors, although their results are not always compatible.

Landauer and Dumais (1997) presents an extensive study on the semantics of LSA.
The main conclusions of this study are:

1. LSA is capable of capturing higher-order indirect associations - LSA is capable
of capturing higher-order semantic similarities according to the transitivity of
similarity which is defined as

• If A and B are similar and B and C are similar, A and C are similar (even
if A and C never appear in the same contexts)

2. LSA has inductive power - 75% of LSA knowledge about words is derived from
documents that do not contain the words. To measure this synonymity experi-
ments were conducted with LSA models trained on text containing the synonyms
and text not containing them. It was shown that the discriminative power of
the model for the synonymity task increases with the size of the training corpus,
even when the training corpus did not contain the synonyms.

Ad (1): If semantic similarity is not at least partially transitive, it would not be
justified to call the relation a ‘similarity’. Transitivity is one defining condition of
similarity besides reflexivity and symmetry.

45



4 Latent semantic analysis (LSA) based language models

Ad (2): This result is needed if the method is to be used to explain human language
learning on an empirical basis. The epistemological problem of the empiricist is how
to derive a complex picture of the world by just being exposed to sensory data. Since
LSA is capable of deriving most of its word knowledge indirectly by just being exposed
to a text corpus (empirical basis) it is possible to learn semantic similarity by limited
amounts of data. At least with a corpus that is as limited as the number of experiences
a human child has during the process of language acquisition.

Wandmacher (2005) gives a slightly different picture of LSA performance concerning
semantics. The author compares LSA performance to the performance of a collocation-
based method on the identification of semantic relations. Semantic relations are di-
vided into ‘semantic relations’, which are lexical semantic relations like synonymy (‘has
the same sense as’) and hypernymy (‘is a super ordinate of’), ‘morphological relations’
that hold if a word is a morphological derivation of another word (student, students),
‘associations’ that are intuitive relations of semantic association (airplane / to land,
cat / milk) (Wandmacher, 2005) and ‘erroneous relations’.

‘Intuitive’ means here that the labelers that performed the classification decided that
an association relation holds, on the basis that they knew some sample prototypical
associations. The classification task was done by two German native speakers. It
would clearly be interesting how these native speakers determine the presence of an
association. One could try to classify each possible predication as an association, but
this definition would be too wide. The examples given by Wandmacher (2005) suggest
that associations are more like necessary properties/functions of an object (airplane /
to land)5 and stereotypes (cat / milk).

The class of ‘associations’ was introduced when the poor performance of LSA for
the other relations was realized (Personal communication with the author). When
taking the 5 nearest neighbors of a word the number of non-erroneous relations is only
around 50%. No threshold for similarity was used, so this could be one reason for the
poor performance.

Further analysis in Wandmacher (2005) shows that LSA performance in captur-
ing the multiple meanings of ambiguous words is worse than the performance of the
collocation-based method. The collocative significance sig(A,B) is defined according
to Quasthoff and Wolff (2002) as

Definition 4.18 Collocative significance

sig(A,B) =
fAfB

n
− fAB log2(

fAfB

n
) + log2(fAB!)

where fA is the number of contexts where A occurs and fAB is the number of contexts
where A and B co-occur in a paragraph among n paragraphs. In the case of ambiguous

5An airplane would not be the kind of thing that it actually is, if it would not have the possibility
to land.
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words LSA always favors the dominant sense. This shortcoming of LSA models was
already known. Hofmann (1999) also argued for other latent variable models like Prob-
abilistic Latent Semantic Analysis (PLSA), because they are capable of representing
semantically ambiguous words.

4.3.1 Lexical meaning and sentence meaning

Following Lyons (1995, p. 33) we distinguish between lexical or word meaning, sen-
tence meaning, and utterance meaning. Since there are too many semantic concepts,
that eventually could be covered by LSA models, the discussion is restricted to a cer-
tain concept from each type of meaning. In the context of lexical meaning this is
‘synonymy’, in the context of sentence meaning ‘predication’ and ‘negation’ are dis-
cussed. Utterance meaning is not covered. Utterance meaning deals with the role
of speech acts (questions, promises, etc.) and discourse relations like conversational
implicatures (Grice, 1981). Sentence meaning is at the heart of logical semantics and
is mostly dealing with the concept of “truth” and related concepts (negation, predica-
tion, quantification, etc.). The notation for words, word forms, and meanings follows
the conventions given in Chapter 1.

Synonymy

The idea to define identity via a substitution principle goes back to Leibniz. He argued
that “those terms of which one can be substituted for the other without affecting
truth are identical” (Ishiguro, 1990, p. 17), or in Latin words “Eadem sunt, quorum
unum alteri substitui potest salva veritate”. Therefore it is called the ‘salva veritate’
principle.

In WordNet synonymity is defined in a weaker sense restricted to certain contexts.

The notion of synonymy used in WordNet does not entail interchangeabil-
ity in all contexts; by that criterion, natural languages have few synonyms.
The more modest claim is that WordNet synonyms can be interchanged in
some contexts. To be careful, therefore, one should speak of synonymy rel-
ative to a context, but in order to facilitate the discussion this qualification
will usually be presupposed, not asserted (Miller, 1998).

It is interesting that this definition does not mention a concept that may not change
through the interchange. Without such a concept however the whole definition of
interchangeability is meaningless. The problem is that many concepts that can be used
in this definition make it circular. Like the definition that two words are synonymous if
they have the same meaning in all contexts. This means to define sameness-of-meaning
with sameness-of-meaning.
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Landauer and Dumais (1997) contains an evaluation on the performance of LSA
models on a synonymity test compared to human synonymity judgments. The work
shows that LSA has the same performance as human non-native speakers in syn-
onymity judgment tests. This result is encouraging, although it is only valid for non-
native human speakers of a language. Native speakers would probably outperform the
LSA model on that task. It shows how LSA can explain the capacity of humans to
make synonymity judgments.

Predication

The basic concept of logical semantics is the concept of logical consequence. To model
logical consequence for classical first-order predicate logic (Quine, 1981) one has to
be able to model at least negation, disjunction (Lukasiewicz, 1935), existential quan-
tification, predication, and identity. All other logical connectives and quantifiers can
be defined with these concepts. It is not argued that the formal languages of logic
are the ideal candidates for an analysis of natural language. But the study of these
languages makes clear what is necessary to model the concept of logical consequence
or inference. And this concept is surely an important concept of sentence meaning.6

Kintsch (2001) discusses a method of taking a predicate (ran) and modifying the
LSA-space using this predicate such that the semantic similarity between the predicate
and its reasonable arguments like horse is higher than its similarity to unreasonable
arguments like color. The modification of the LSA-space thereby provides a compre-
hension model, while the LSA model itself can be seen as a knowledge base.

Negation

Widdows and Stanley (2003) uses a similar methodology to LSA to derive word mean-
ings as vectors (Schütze, 1998), and defined negation and disjunction on these word
vectors. As the underlying logic they used quantum logic (Birkhoff and von Neumann,
1936), not classical logic. The purpose of these definitions is to use the semantic space
for Information Retrieval (IR).

In classical Boolean logic the disjunction of two events A and B is represented by
set union A ∪ B. It follows that if a ∈ A ∪ B then at least one of the statements
a ∈ A, a ∈ B must hold (Widdows and Stanley, 2003). In quantum mechanics it is
possible that this principle is violated (Putnam, 1976). The problem can be solved by
replacing the sets by vector subspaces and the set union by the vector sum +. Then

6Bos and Markert (2005) show how deep and shallow methods can be combined to compute textual
entailment, which is the relation when a text logically implies another text. The shallow methods
used there rely on a concept of text overlap. Carnap and Bar-Hillel (1952) showed how it is possible
to go the other way around, from a rich logical structure to a concept of semantic information.
Their classic study is a good starting point to see what is lost during this transformation, and why
this transformation is not simply invertible.
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the above principle does not hold any longer since there are many elements in A + B,
which are neither in A nor in B.

4.3.2 Synonymity experiments

To test the performance of LSA-based language models on a synonymity task LSA
similarities are compared with synonymity classes given in WordNet. Thereby the two
modeling approaches are related to one another.

For this comparison an LSA model on the Fisher conversational speech data (Ta-
ble 4.7) is trained. The similarity between words in the semantic space is defined as
the cosine similarity (Definition 4.6). The vocabulary size of the model is 53, 753.

From this model words are deleted, that only appear once in the corpus. For these
words the LSA model provides no semantic. This results in a vocabulary containing
33, 933 items.

Then the intersection of words in the LSA model and in WordNet is taken, without
considering word forms. So if student and students is found in the vocabulary only the
base form is included in the common vocabulary. Testing the correlation of metrics
for word forms would be another task. Other experiments showed that word forms
tend to have high LSA similarity, which is intuitively clear since they are very likely
to appear in the same documents.

From this vocabulary words are selected that have at least one synonym in WordNet
that is also in the vocabulary. Otherwise the words would form a singleton synonym
class, and the LSA performance cannot be measured on such classes. Carrying out
these pre-processing steps the size of the vocabulary is further reduced from 33, 933
to 11, 519 items.

Then the synonym classes are extracted according to WordNet synonyms for the
reduced vocabulary. A synonym class is defined as the words in the reduced vocabulary
that are synonymous regarding one sense. This uses a concept of weak synonymy where
it is not required that words are synonymous in all contexts. All senses of both words
are selected and the intersection between these senses is taken. If this is not the empty
set, the synonyms belong to the respective synonym class.

Synonym class Words
“sourceN,9” reservoir, source
“sourceN,7” author, generator, source
“sourceN,6” germ, seed, source
“sourceN,3” reference, source
“sourceN,2” informant, source
“sourceN,1” beginning, origin, root, source

Table 4.2: Synonym classes for the word form source.
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Table 4.2 shows the synonym classes of the word form source. “sourceN,9” signifies
the 9th sense of the noun “source”. It can be seen that a certain word form belongs to
multiple synonym classes. It can of course also happen that a word form has multiple
POS. In this way the space is further reduced to 9413 synonym classes.

To test the correlation between LSA models and WordNet synonyms, the mean
similarity of a word to all other words (excluding the word itself) is computed. This
is done for each word in the vocabulary. As the second random variable the mean
similarity of a word to all other words in the same synonym classes (excluding the
word itself) is computed. For Table 4.2 this is the within-class-similarity of reservoir,
source, the within-class-similarity of author, generator, source and so on.

T-tests for paired samples indicate that the LSA similarities within synonym classes
are significantly higher than the similarities over the whole vocabulary (p < 0.005,
#words = 11, 519). This indicates further that the semantics given by the LSA models
can be used for approximating synonymity.

Figure 4.1 shows the LSA similarities for 31 words in the vocabulary belonging to
8 randomly selected synonym classes. The LSA similarities are symmetric since the
cosine similarity is symmetric. The highest value (= 1.0) is reached with self-similarity
of words shown along the diagonal.

One can see that some very high similarities (> 0.6) are within synonym classes
shown in black squares. These are between option and choice in the synonym class
(choice, option, pick, selection), between prohibited and forbidden within (forbidden,
out, prohibited, taboo) and between taught and schooled in the synonym class (in-
structed, schooled, taught). The inclusion of out in the (forbidden, out, prohibited,
taboo) class may seem surprising, but is due to the representation of rare senses in
WordNet. The example given for this sense of the adjective out is In our house danc-
ing and playing cards were out.

But there are also other high similarities namely between lucky/growing, out/wrapped,
out/choice, out/growing, and out/lucky. The high similarities to out can be lowered
by applying POS tagging. Thereby counts for the adverb out (Get out of here! ) and
the preposition out (looking out of the window) are not added to counts of the ad-
jective out. Overall however the similarities within synonym classes are higher than
the similarities within the whole vocabulary. The self-similarities are excluded in the
computation of the mean similarities.

This result is promising for the application of the models to the task of language
modeling. It remains to be seen how strong the impact of these semantic relations is
for predicting word sequences.

4.4 Analysis of the models

To gain a deeper understanding of the models, the effects of model parameters are
analyzed and LSA models are compared to other similar models. For this analysis
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Figure 4.1: Sample LSA similarities for WordNet synonym classes.

meeting heldout data containing four ICSI, four Carnegie Mellon University (CMU)
and four National Institute of Standards and Technology (NIST) meetings, is used (Ta-
ble 4.8). The perplexities and similarities are estimated using LSA and 4-gram models
trained on the Fisher conversational speech data and the meeting data (Table 4.7).
The models are interpolated using the INFG interpolation method (Table 4.1).

4.4.1 Visualizing the semantic space

Table 4.3 shows sample un-informativeness values εwi (Definition 4.2) for the meeting
corpus and the Fisher conversational speech corpus. Some content words like speech,
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Figure 4.2: Word vectors in the 3-dimensional space.

numbers and recognition have high εwi values similar to function words like the, and
and have in the meeting corpus, because the ICSI meeting corpus that is a large part
of the whole meeting corpus has a specific topic, which is “speech recognition”.

wi Meeting εwi Fisher εwi

the 0.981 0.983
and 0.979 0.982
have 0.978 0.978
recognition 0.828 0.510
speech 0.826 0.602
numbers 0.826 0.602
flower 0.186 0.414

Table 4.3: Word un-informativeness in meetings.

The εwi values that are used as interpolation parameters for the INFG interpolation
differ between one corpus and another. In the Fisher corpus these content words have
a higher informativeness. One possible way to think of these values is as indicators
if a corpus contains a content-word-like distribution of a word and thereby contains
semantic information concerning this word. In this case the respective model should
be considered in predicting the word.

Figure 4.2 shows three word vectors of the form uiS derived from broadcast news
data which are drawn using the three most significant dimensions of the word vectors.
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abandon accident afraid
abandon 1.00 0.64 0.70
accident 0.64 1.00 0.75
afraid 0.70 0.75 1.00

Table 4.4: Cosine similarity of word vectors.

The similarity between the words is given by the cosine similarity of the word vectors
shown in Table 4.4. These similarities are computed by using all dimensions of the
LSA model. In this example accident is closer to afraid (0.75) than to abandon (0.64),
while afraid is almost equally similar to accident (0.70) and abandon (0.75). These
similarities can be thought of as semantic associations between the words and are used
for word clustering.

4.4.2 Perplexity space of combined LSA models

Figure 4.3 shows the perplexities for the meeting and the Fisher LSA model, that
are interpolated with an n-gram model using linear interpolation (Definition 4.11)
tested on the meeting heldout data (Table 4.8). η1 and η2 are the corresponding LSA
model weights. Zeros are plotted where the interpolation is not defined that is where
η1+η2 ≥ 1, which would mean that the n-gram model gets zero weight. The parameter
of the n-gram model is η3 = 1− (η1 + η2).

This figure shows that the minimum perplexity is reached with η1 = η2 = 0. Fur-
thermore one can see that the graph gets very steep with higher values of η. This is
beneficial for the gradient descent optimization since it is always clear where to go to
reach the minimum perplexity. The minimum perplexity is however reached when the
LSA model is not used at all and solely the n-gram model is used.

Figure 4.4 shows the perplexity space of the INFG interpolation (Definition 4.12)
for the meeting and the Fisher model that is much flatter than the linear interpolation
space. The difference in steepness can be estimated by looking at the perplexity scale,
which spans [67, 72] for the INFG interpolation compared to [0, 1000] for the linearly
interpolated models. Therefore, the parameter optimization is harder and slower for
this interpolation.

On the other hand an improvement over the n-gram model can be achieved when
using this interpolation. The optimum perplexity is not reached when giving both LSA
models θi = 0, but when setting the parameter for the Fisher model to θ2 = 0 and
the meeting model parameter to θ1 = 1. The θi’s have only the function of Boolean
model selectors in this 2-model case. There is still the word entropy that is varying
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Figure 4.3: Perplexity space for 2 linearly interpolated LSA models.

the interpolation weight between the LSA and n-gram models.
When conducting WER experiments with combinations of more than two LSA mod-

els (Section 4.5.9), gradient-descent optimization is used to optimize all the interpola-
tion parameters together. In this section, we have used a brute-force approach to get
a picture of the whole perplexity space.

4.4.3 The repetition effect: LSA models and cache models

Some improvements of LSA-based language models over n-gram models are surely
due to the redundant nature of language and speech. A lot of words that pop-up in
a meeting for example are likely to pop-up again in a short window of context. A
word is highly similar to a context when the word appears in the context. A cache
based language model can exploit this fact by keeping a cache of words that already
have been seen, and giving them higher probability (Kuhn and De Mori, 1990). To
test if the performance of LSA-based models only rests on this cache-effect the word
probabilities of the models are compared.

The cache or history are the words that have appeared in the text up to a certain
word. In cache-based models the similarity of the word to the history/cache increases,
if the word is in the history/cache (e.g. it has already been seen). In LSA-based models
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Figure 4.4: Perplexity space for 2 INFG interpolated LSA models.

the history is represented by a pseudo-document vector. This pseudo-document vector
is constructed from the representations of the words that appear in the history/cache.
The word that is to be predicted is also represented as a vector. Thereby the similarity
between the history/cache and the word can be measured, even when the word does
not appear in the history. To measure the cache-effect for LSA-based models one
has to measure the prediction performance of the models for words that are in the
history/cache, shown in Table 4.5 as ‘word in hist.’ and words that are not in the
history/cache (Table 4.5).

Table 4.5 shows the number of improved (+) and not-improved (−) word probabil-
ities for the meeting and the Fisher LSA model compared to a 4-gram model trained
on the meeting and the Fisher data, tested on the heldout data. ‘+’ means that the
probability of the LSA model is higher than the n-gram model probability, ‘−’ means
that it is lower. The end-of-sentence event is not included.

To compute these numbers the LSA and n-gram models are applied to the test data.
Then the two model probabilities are compared for each word and the number in the
‘+’ or ‘−’ class is increased. Finally we check if the predicted word already appeared
in the history and increase the count for the ‘word in hist.’ or ‘word not in hist.’ class.

For the meeting model 60% of the improvements are due to the cache-effect where
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+ + − −
Meeting Fisher Meeting Fisher

Word in hist. 54K (60%) 57K (64%) 5K ( 5%) 5K ( 6%)
Word not in hist. 6K ( 8%) 5K ( 6%) 25K (27%) 23K (24%)
90K (100%) 60K (68%) 62K (70%) 30K (32%) 28K (30%)

Table 4.5: Number of improved (+) and not-improved (−) LSA word probabilities.

the word appears in the history. 8% of the improvements are achieved for words
that are not in the history (Table 4.5). This improvement must rely on a feature of
LSA-based models that goes beyond the cache effect.

The first value is so high (60%) because the decay parameter is used in the LSA
model, such that a word vector disappears from the pseudo-document. But when
counting if a word has already appeared in the history/cache, all words seen so far
are considered. This increases the cache-effect.7 So a certain amount of this improve-
ment is actually due to the semantics of the LSA model. This happens because the
word vector decays in the pseudo-document but the word stays in the cache for the
whole meeting. The percentage of the classes ‘+/Meeting/Word not in hist.’ and
‘+/Fisher/Word not in hist.’ has to be increased by this amount.

To estimate the improvements of the LSA model, that are achieved for words not
already in the history, we estimate the length of the history/cache for the case when
all words seen in the test data so far are added to the history/cache. This number can
then be compared to the estimated number of words that are present in the pseudo-
document. The first number can be estimated by assuming that each meeting contains
≈ 7500 (90, 455/12 meetings) words. The mean length of the history for a document
of length k is given by the arithmetic mean 0+1+2+...+k−1

k = k+1
2 . In the above case

the mean length of the history is ≈ 3700. So given a mean length of around 3700, for
the meeting model 60% (Table 4.5) of the words belong to the class ‘+/Meeting/Word
in hist.’ (≈ 4500 words). But if we assume that only the last 100 words are present
in the pseudo-document, some improvement of the LSA model also falls into the class
‘+/Meeting/Word not in hist’, which must therefore be significantly higher than 8%
for the meeting models (Table 4.5).

Suppose that word wi appears at position 456 in the text (wi456), and that the
meeting LSA model has a higher probability for that word than the meeting n-gram
model. Assume that wi also appears once at position 123 (wi123). This will increase the
counts for ‘+/Meeting/Word in hist.’. But the LSA model already forgot that word,

7It is only a feature of our experimental setup to search among all words seen so far, and not an
intrinsic property of the models.
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so the appearance of the word in the history cannot be the reason for the improvement
of the LSA model. Therefore the counts ‘+/Meeting/Word not in hist.’ should be
increased.

+ + − −
Meeting Fisher Meeting Fisher

Word in hist. 164 139 140 117 1545 2399 1428 2148
Word not in hist. 31,132 21,482 45,432 28,116 36 40 87 101

284 235 238 193 68 80 150 186

Table 4.6: Perplexities for n-gram and LSA models.

Table 4.6 shows the perplexities for the models. Each cell contains two values, the
first for the n-gram perplexity, the second for the LSA perplexity. The small classes
(‘+/Meeting/Word not in hist.’, ‘+/Fisher/Word not in hist.’, ‘−/Meeting/Word in
hist.’, ‘+/Fisher/Word in hist.’ in Table 4.5) get a very high perplexity.

For the significance experiments the probabilities of the different classes for the
different models were compared. For each class (e.g. ‘+/Meeting/Word not in hist.’)
two samples were compared. One sample contains the LSA probabilities for the words
in that class, the other sample contains the n-gram probabilities. The size of the
samples is the same as the class sizes in Table 4.5.

According to t-tests for paired samples the differences between LSA and n-gram
models for the following classes are significant (p < 0.05):

‘+/Meeting/Word in hist’
‘+/Fisher/Word in hist’
‘−/Meeting/Word in hist.’
‘−/Fisher/Word in hist.’
‘−/Meeting/Word not in hist.’
‘−/Fisher/Word not in hist.’

The differences within the classes ‘+/Meeting/Word not in hist.’ and ‘+/Fisher/Word
not in hist.’ are however not significant, but as already mentioned the true size of this
class is bigger than the estimated size.

This analysis shows that LSA-based models cannot be simply replaced by cache-
based models. Although the repetition effect is important for LSA models they also
cover other information.
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4.4.4 The similarity exponent effect: γ exponent optimization
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Figure 4.5: Similarities for γ = 1.
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Figure 4.6: Similarities for γ = 8.

The parameter γ (Definition 4.9) is used to extend the small dynamic range of the
LSA similarity (Coccaro and Jurafsky, 1998). Here this parameter is optimized and
it is shown how it influences the LSA similarities. The similarities are scaled by using
the minimum similarity given the history as in Definition 4.9. Otherwise the exponent
would turn negative similarities into positive values. Figure 4.5 and 4.6 show the
similarity distributions for γ values of 1 and 8, for the Fisher model on the heldout
data. The second distribution expands the similarity range and concentrates a lot of
similarities around zero. The high value for zero similarities in both figures comes
from the zero similarities given to words not in the LSA model. Additionally some
small similarities get close to zero with a higher exponent in the second figure.

All similarities < 1.0 in Figure 4.5 become smaller in Figure 4.6. This is due to
the nature of the exponentiation where all values between [0, 1] get smaller if expo-
nentiated. To avoid this for similarities in the interval [1− β, 1] one can add an offset
β ∈ [0, 1] to the similarities. For β = 1 no similarities get smaller if exponentiated
since all similarities are bigger than or equal to 1. Then the similarity distribution
gets flatter. β is also optimized to find the effect of β values that are smaller than
1. The optimization of β is done with a brute-force approach shown for the meeting
(Figure 4.8) and the Fisher (Figure 4.7) model.

For this work it is interesting to see which γ values optimize the perplexity on the
heldout data. Figure 4.7 shows perplexities of the Fisher model on the heldout data
for different values of γ and β.

One can see that the lowest perplexity for all β values is nearly the same while
only the exponent is shifting. It can also be seen that all LSA models outperform the
4-gram model even for γ = 1. The optimal γ value for the meetings (Figure 4.8) is
for all β smaller than for the Fisher model (Figure 4.7). One generalization that can
be drawn from experiments with the meeting and background models in Section 4.5 is
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Figure 4.7: Perplexities for the Fisher LSA model with different γ and β values.

that the optimal γ value is in general higher for bigger models, that is models which
are trained on larger corpora. This is also reflected in the relation between the meeting
model and the Fisher model which can be seen from figure 4.8 and 4.7.

With the first approach (not using β or setting it to 0) one comes up with a much
smaller exponent than with the second (β ∈ (0, 1]). It is conjectured that the different
values of exponents found in the literature ranging from 7 (Coccaro and Jurafsky,
1998) to 20 (Deng and Khudanpur, 2003) are due to the usage of different values of
β. Since a difference in perplexity cannot be reported there is no reason to favor one
of the approaches. γ depends on the training data, so it is necessary to optimize it
for each model. After the model is trained the γ values are optimized on the heldout
data. Then the optimized models are used for testing.

The similarity exponent parameter is optimized independently from the interpola-
tion parameters. It has been shown that a change in β does not affect the minimum
perplexity that can be reached. Therefore β is not used in the experiments in Sec-
tion 4.5. There we also found that the optimal γ value is quite stable for different
test data sets, for a fixed model. Different models however do have different optimal
γ values.
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Figure 4.8: Perplexities for the meeting LSA model with different γ and β values.

4.4.5 The history effect: δ decay optimization

Here it is shown how the decay parameter δ (Definition 4.5) influences the perplexity.
The 4-gram Fisher and meeting models are again the baselines. As a test set the
meeting heldout data is used. The idea of the decay parameter is to update the
pseudo-document in a way that words that were recently seen get a higher weight
than words that are in a more distant history. Finally the words that are far away
from the actual word are forgotten and have no more influence on the prediction of
the actual word.

Figure 4.9 shows that there is a constant drop in perplexity as the length of the
history increases. There is however not much difference for the decay value 0.98 and
1.0, which means that no words are forgotten. But even the shortest history with a
decay of 0.05 has a lower perplexity than the 4-gram for the Fisher and the meeting
model on the heldout data. It can be concluded that it is beneficial for the models
not to forget too fast but there is no big difference between forgetting very slowly and
never. In the experiments below, nevertheless, a decay of 0.98 is used because it still
has the best performance concerning perplexity and because a similar value (0.975)
was also found to be optimal by others (Bellegarda, 2000a) for the Wall Street Journal
recognition task. Bellegarda (2000a) optimized the decay parameter on the WER and
not on perplexity.

Since the decay parameter has similar optima for domains like meetings and broad-
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Figure 4.9: Perplexities for a 4-gram and LSA models with different decays δ.

cast news (Wall Street Journal) we think that this value reflects an intrinsic property of
LSA-based LMs. The decay parameter is optimized independently of the interpolation
parameter, and the similarity exponent parameter.

4.5 Experiments

4.5.1 Data sources

This section describes all data sources that have been used in this chapter. For the
training and testing of models the data is often divided into a training data set, a
development test set or heldout data set, and a test set. The training data set is used
to train the models. The heldout data or development test set is used to optimize
model parameters. Finally the optimized models are tested on the test data set.

Table 4.7 shows the different training data sets. There are two meeting corpora,
one Conversational Telephone Speech (CTS) corpus, two broadcast news corpora, and
two corpora of web data that are used for LM training. Since the corpora are only
used for language modeling, only the transcriptions are used. The web data corpora
are however pure text corpora, e.g. there is no speech data such that they would be
transcriptions of it.

The web data is collected by performing a web search using n-grams from the
meeting (Meet-Web) or n-grams from the Fisher corpus (FWeb). The documents that
are returned by this search are then cleaned and added to the Meet-Web or FWeb
corpus (Bulyko et al., 2003).

Table 4.7 and 4.8 shows the number of words, type, number of documents, number of
speaker turns, and a reference for the corpora. The Linguistic Data Consortium (LDC)

61



4 Latent semantic analysis (LSA) based language models

Corpus Words (×103) Type Turns Docs Reference

Meetings 885 Meeting 120,626 94 (Janin et al., 2003)
(ICSI, trans. LDC2004T04
NIST, LDC2004T13
CMU) LDC2004T10
Fisher 19,678 CTS 1,845,272 15,151 (Cieri et al., 2004)

trans. LDC2004T19
LDC2005T19

Hub4-LM96 130,850 Bnews 8,570,146 125,411 LDC98T31
trans.

TDT4 11,869 Bnews 479,569 608 LDC2005T16
trans.

Meet-Web 147,510 Web 11,435,875 132,105 (Bulyko et al., 2003)
data

FWeb 530,284 Web 45,606,777 147,480 (Bulyko et al., 2003)
data

Table 4.7: Training data sources.

number is included in the reference if the corpus is available from LDC. What is con-
sidered as a document and a speaker turn varies depending on the corpus. For the
meeting corpora the documents are meetings, for the CTS corpora they are conversa-
tions, for the broadcast news corpora they are broadcast news stories, and for the web
data they are web documents. For all corpora the speaker turns are regular speaker
turns, except for the web data where they are written sentences. The meeting corpus
includes 94 meetings, 11 NIST meetings, 14 CMU meetings, and 69 ICSI meetings.

Table 4.8 shows the different test data sets. As development test data the heldout
data set is used. This data set consists of 12 meetings. 4 ICSI, 4 CMU, and 4 NIST
meetings taken from the original meeting corpus. The meeting corpus that is used to
train the meeting models (‘Meetings (ICSI, NIST. CMU)’ in Table 4.7) is the original
meeting corpus minus the heldout meetings.

As test data sets the sets RT02-DEV, RT04-S-DEV and RT05-S were used. RT02-
DEV is a development test set from the NIST Rich Transcription 2002 (RT-02) meeting
evaluation which consists of two ICSI meetings. RT04-S-DEV is the development
test set from the NIST Rich Transcription 2004 Spring (RT-04S) meeting evaluation.
RT05-S is conference room meeting test data from the NIST Rich Transcription 2005
Spring (RT-05S) meeting evaluation (Fiscus et al., 2005). Since this test data is used
for perplexity and WER experiments it contains meeting transcriptions and speech
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Corpus Words (×103) Type Turns Docs Reference

RT02-DEV 37 Meeting 5957 2
trans.

RT04-S-DEV 17 Meeting 1680 8
trans.

Meeting 90 Meeting 12,876 12 (Janin et al., 2003)
heldout trans. LDC2004T04
data (Garofolo et al., 2004)

LDC2004T13
(Burger et al., 2004)

LDC2004T10
RT05-S 23 Meeting 3340 10 (Fiscus et al., 2005)

trans.
& speech

Table 4.8: Test data sources.

data. The speech data is used in the decoding process.
For the perplexity experiments mostly the RT04-S-DEV data was used. For the

optimization and analysis of the models the meeting heldout data was used. For the
WER experiments RT05-S test data was used. The RT05-S test data was not available
when the perplexity experiments were conducted.

4.5.2 Perplexities for meeting models

For the training of the first models the ICSI meeting corpus (Janin et al., 2003) is used.
For the test the 2002 meeting evaluation development set (RT02-DEV) (Table 4.8) is
used. Meeting boundaries are taken as document boundaries, which are needed for
the training of the LSA model.

Table 4.9 shows the perplexity results for ICSI meetings for the different methods.
As a development test set for optimization the ICSI part of the heldout data set (Ta-
ble 4.8) was used. The γ parameters were optimized using gradient descent. For the
meeting models a value of 5 was found to be optimal. While the “linear interpolation”
(LIN) and the “similarity modulated n-gram” (SIMMOD) do not bring any improve-
ments over the baseline 3-gram model, the “information weighted geometric mean”
(INFG) reduces perplexity. The improvement of the “information weighted geometric
mean” interpolation over the 3-gram model is consistent with findings in Deng and
Khudanpur (2003). For the other interpolations always the INFG method is applied
since it outperformed all other interpolation methods.
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Model Perplexity
3-gram 84.3
INFG 81.7
SIMMOD 85.1
LIN 88.2

Table 4.9: Perplexity results for ICSI meetings on RT02-DEV.

The next meeting model is trained on CMU, ICSI, and NIST meetings (Table 4.7).
For these and the other tests, the NIST Rich Transcription 2004 Spring (RT04-S)
meeting evaluation development test set (RT04-S-DEV in Table 4.8) is taken. The
optimization was done on the heldout data set (Table 4.8). Table 4.10 shows the
perplexities for this model interpolated using the INFG method with the n-gram model
that is estimated with modified Kneser-Ney smoothing (Chen and Goodman, 1998).
There are small improvements over all meetings.

According to t-tests for paired samples the differences between LSA models and
n-gram models are significant for the ICSI meetings (p < 0.001, N = 4898) and for all
meetings (p < 0.001, N = 18853). No significant differences are found for the CMU
(p = 0.12, N = 4235), LDC (p = 0.61, N = 5225), and NIST (p = 0.11, N = 4492)
meetings. The reason for the significant improvement on the ICSI meetings is that the
ICSI data make up most of the meeting training data.

Model All CMU ICSI LDC NIST
4-gram 129.9 176.4 77.1 160.1 134.7
INFG 125.4 170.1 75.9 152.1 129.7

Table 4.10: Perplexity results for all meetings on RT04-S-DEV.

4.5.3 Perplexities for meeting models with topic boundaries

For the ICSI meeting corpus there is also a version that includes topic boundaries.
Topic boundaries should be beneficial for LSA models since they increase the number
of training documents and segment the corpus into semantically significant units. The
topics are structured into topic, sub-topic and sub-sub-topic.

For these experiments three different LSA models are trained. The first is trained
with all the non-ICSI meetings together with the ICSI meetings with simple document
boundaries (Topic1). The second is trained with ICSI meeting training data that is
structured into topics and then sub-topics (Topic2). The third used topic, sub-topic

64



4.5 Experiments

Model CMU ICSI LDC NIST
4-gram 172.9 76.4 156.3 132.2
Meeting-LSA 168.5 75.4 149.0 127.7
Topic1 169.3 77.7 151.2 130.8
Topic2 171.7 77.9 153.6 132.0
Topic3 171.1 78.4 153.1 132.4

Table 4.11: Perplexity results for meetings with topic boundaries on RT04-S-DEV.

and sub-sub-topic (Topic3). This results in a document number of 523 for the Topic1-
corpus, 1293 for the Topic2-corpus, and 1516 for the Topic3-corpus in comparison
to 106 documents (Meeting data and meeting heldout data) in the original meeting
corpus.

The topic boundaries are given as part of a structured eXtensible Markup Language
(XML) document. To expand this representation into a flat representation containing
chunks of text separated by document boundaries, the text belonging to a sub-topic
is included in the corresponding topic text, and the text belonging to a sub-sub-topic
is included in the corresponding sub-topic and topic text. In this way the fine-grained
text is repeated. To avoid repetition one could count a sub-topic text not as part of
the topic text, which would make the topic text possibly very small.

As Table 4.11 shows there is no perplexity gain for the topic models over the meeting-
LSA model. Since topic boundaries are available for the ICSI meetings, at least a gain
in perplexity for the ICSI data was expected when using the topic models. But as can
be seen from Table 4.11 the more fine-grained the topic structure is, the worse the
perplexity. The reason for this can be that the documents with the fine-grained topic
boundaries (Topic2, Topic3) get too small. Another reason for the poorer performance
could be that there are some topics like “introduction” and “end” that are more like
agenda-items than topics.

4.5.4 Perplexities for background domain models

Since the training corpora for meetings are very small further LSA models are trained
on multiple background domains. A mixture of language models trained on adapta-
tion and background domains has also been used for word-based n-gram models for
meetings by Stolcke et al. (2005).

The transcripts of the following widely-used corpora are used: Fisher, Hub4-LM96
and TDT4 (see Table 4.7). Furthermore data collected from the web, similar to CMU,
ICSI and NIST meetings (=Meet-Web), and the Fisher corpus (=FWeb) is used. All
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data sources are shown in Table 4.7. All text corpora together contain almost 1 billion
(837 million) word tokens. For practical reasons an n-gram mixture model is trained
on each corpus separately and then these corpus models are interpolated to yield one
model. The same strategy is chosen for training an LSA model on all available data.

The documents for the Fisher data are conversations, for the Hub4-LM96 broadcast
news data they are news stories, and for the web data websites are taken as documents.
The word-based n-gram model (Stolcke et al., 2005) used in ASR for multi-party
meetings in the 2005 meeting recognition evaluation (Fiscus et al., 2005) is also trained
on the same data. When first interpolating meeting LSA models with this large
meeting n-gram model no improvement was seen. This finding motivated us to include
data from background domains.

Model Hub4-LM96 Tdt4 Meet-Web Fisher
4-gram 144.1 238.8 145.5 131.5
INFG 132.0 224.6 134.6 121.2

Model FWeba FWebb FWebc FWebd
4-gram 130.0 130.0 130.0 130.0
INFG 120.8 119.3 119.2 119.9

Table 4.12: Perplexity results for background domain models on RT04-S-DEV.

Table 4.12 shows the estimated perplexities for the models trained on the background
domain data. The corresponding n-gram models are trained on the same data. The
Fisher web data FWeb is divided into four parts FWeba, FWebb, FWebc, and FWebd
because it is too big to train one LSA model on it. The test set is again the RT04-S-
DEV test set. There are improvements over all background domains.

According to t-tests for paired samples all differences between n-gram models and
LSA models in Table 4.12 are significant (p < 0.001, N = 18853). These results are
promising concerning the interpolation of multiple LSA models. Each LSA model can
improve the n-gram model.

Concerning the γ exponent parameter defined in (4.9) that is used to expand the
small dynamic range of the LSA similarity, it is found that the optimal value of γ is
higher for bigger models. The optimal value for the meeting model is 5, for the Fisher
model it is 7 and for all other models it is 9, using an offset β = 0.

4.5.5 Perplexities for combined LSA models

Figure 4.10 shows optimized θi values for the INFG interpolation (Definition 4.12) of
meeting and background LSA models. The meeting model gets most of the weight,
followed by the Fisher and FWeb data. The meeting model also gets most of the
weight for the n-gram mixture models. Since the Fisher data is conversational speech
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Figure 4.10: Optimized θi values for INFG interpolation of LSA models.

data, and the FWeb data is web data collected according to the Fisher corpus, the
weights for these models are justified. It is interesting that the Meet-Web data gets a
lower weight, although it is web data collected on the basis of the meeting data.

Model All CMU ICSI LDC NIST
4-gram mixture model 85.4 104.1 67.0 87.5 89.8
LIN 85.4 104.1 67.0 87.5 89.8
INFG 84.5 103.0 66.2 86.4 88.9

Table 4.13: Perplexity results for combined LSA models on RT04-S-DEV.

Perplexity results for the combination of all of the eight background LSA models,
the meeting LSA model, and the n-gram mixture model trained on all the available
data are given in Table 4.13.

In case of the linear interpolation all LSA models get zero weight, so there is no
improvement over the n-gram model. The INFG interpolation gives a small improve-
ment, where the highest θi weights are given to the meeting LSA model, followed by
the models trained on the Fisher and the Fweb data. According to t-tests for paired
samples all differences between n-gram models and LSA models in Table 4.13 are
significant (p < 0.001).
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4.5.6 Word-error-rate (WER) for meeting models

For the WER experiments, conference room meeting test data from the NIST Rich
Transcription 2005 Spring (RT-05S) meeting evaluation (Fiscus et al., 2005) is used,
which contains meetings from several different sites. During decoding three language
models are used. A bigram is used for word lattice generation, a trigram is used for
decoding from word lattices, and a 4-gram is used for N -best list rescoring (Stolcke
et al., 2005). After that the LSA model trained on the same data is used to rescore the
N -best lists again and the results are compared to the 4-gram baseline. The number
N varies depending how many hypotheses are generated in the decoding process.

It can happen that the elements of N -best lists are very short or that they are only
chunks of sentences. In this case the full potential of LSA-based models, which lies in
the modeling of the long-term history cannot be realized. The n-gram language model
for example is applied to the N -best list elements without taking previous N -best lists
into account. To realize the potential of LSA models, the N -best lists are ordered, and
the first-best element of the previous N -best list is added to the pseudo-document. In
this way the long-term history is encoded. The drawback of this approach is that the
first-best element need not be the correct one. But as the LSA model performance is
dependent on wider contexts (Section 4.4.5) this approach is justified.

n-gram LSA Relative change
AMI 25.5 25.5 ∓0.0%
CMU 24.7 24.9 −0.8%
ICSI 19.8 19.5 +1.5%
NIST 25.7 25.8 −0.3%
VT 27.0 26.9 +0.3%
ALL 24.9 24.8 +0.4%

Table 4.14: Word-Error-Rates in % for Meeting LSA models.

The relative WER improvements on the meeting data are neither significant for the
ICSI data (+1.5%, p = 0.114), nor for the Virginia Tech (VT) data (+0.3%, p = 0.393)
or for the complete data set (+0.4%, p = 0.791) according to a matched pairs test
(Hunt, 1988; Gillick and Cox, 1989).

When rescoring N -best lists it is however only possible to improve the recognition
rate if the correct result, or a result that is closer to the correct result than the actual
1-best element is present in the list. If no better list entry is present the WER can
only increase or stay the same for this list.
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4.5.7 WER for meeting models with topic boundaries

Since no improvements in terms of perplexity have been achieved by using the topic
models instead of the regular meeting models, topic models are not used for rescoring.

4.5.8 WER for background domain models

n-gram LSA Rel. change
AMI 24.9 25.1 −0.8%
CMU 26.0 26.2 −0.7%
ICSI 23.9 23.9 ∓0.0%
NIST 25.5 25.7 −0.7%
VT 25.0 25.1 −0.4%
ALL 25.1 25.2 −0.3%

Table 4.15: WER in % for Hub4-LM96.

n-gram LSA Rel. change
AMI 28.8 29.1 −1.0%
CMU 28.4 28.7 −1.0%
ICSI 25.7 26.2 −1.9%
NIST 28.4 28.7 −1.0%
VT 26.6 26.7 −0.3%
ALL 27.5 27.8 −1.0%

Table 4.16: WER in % for Tdt4.

n-gram LSA Rel. change
AMI 26.4 26.6 −0.7%
CMU 27.3 28.1 −2.9%
ICSI 24.1 24.5 −1.6%
NIST 25.9 26.0 −0.3%
VT 25.8 25.8 ∓0.0%
ALL 25.9 26.2 −1.1%

Table 4.17: WER in % for Meet-Web.

n-gram LSA Rel. change
AMI 24.1 24.2 −0.4%
CMU 25.9 25.6 +1.1%
ICSI 23.8 24.0 −0.8%
NIST 25.0 24.8 +0.8%
VT 24.6 24.8 −0.8%
ALL 24.7 24.7 ∓0.0%

Table 4.18: WER in % for Fisher.

n-gram Weba Rel. change Webb Rel. change
Weba / n-gram Webb / n-gram

AMI 26.0 25.8 +0.7% 25.9 +0.3%
CMU 26.5 26.5 ∓0.0% 26.4 +0.3%
ICSI 23.5 23.1 +1.7% 23.2 +1.2%
NIST 25.6 25.7 −0.3% 25.6 ∓0.0%
VT 24.0 24.9 −3.7% 24.5 −2.0%
ALL 25.2 25.3 −0.3% 25.2 ∓0.0%

Table 4.19: WER in % for Fisher-Weba and Webb.

For the background domain models significant WER improvements are achieved for
two of the data and meeting sites according to a matched pairs test. For the Fisher
data a relative WER improvement of +1.1% on the CMU data is achieved that is
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n-gram Webc Rel. change Webd Rel. change
Webc / n-gram Webd / n-gram

AMI 26.0 25.9 +0.3% 26.0 ∓0.0%
CMU 26.5 26.6 −0.3% 26.6 −0.3%
ICSI 23.5 23.1 +1.7% 23.3 +0.8%
NIST 25.6 25.3 +1.1% 25.7 −0.3%
VT 24.0 24.6 −2.5% 24.3 −1.2%
ALL 25.2 25.2 ∓0.0% 25.3 −0.3%

Table 4.20: WER in % for Fisher-Webc and Webd.

significant (p = 0.052). For the FWebc data a relative WER improvement of +1.7%
on the ICSI data is achieved that is also significant (p = 0.043).

For the other background domain models that improved the WER the improvements
are not significant according to a matched pairs test. These are the +0.8% improve-
ment of the Fisher model on the NIST data (p = 0.235), the +0.7% and +1.7% of
the FWeba model on the AMI (p = 0.698) and ICSI data (p = 0.079), the +0.3%,
+0.3% and +1.2% of the FWebb model on the AMI (p = 0.966), CMU (p = 0.266)
and ICSI (p = 0.204) data, the +0.3% and +1.1% of the FWebc model on the AMI
(p = 0.612) and NIST data (p = 0.156), and the +0.8% of the FWebd model on the
ICSI (p = 0.259) data.

4.5.9 WER for combined LSA models

n-gram LIN Rel. change INFG Rel. change
LIN / n-gram INFG / n-gram

AMI 24.7 24.7 ∓0.0% 24.5 +0.8%
CMU 26.5 26.5 ∓0.0% 26.7 −0.7%
ICSI 22.6 22.6 ∓0.0% 22.7 −0.4%
NIST 24.4 24.4 ∓0.0% 24.4 ∓0.0%
VT 24.4 24.4 ∓0.0% 24.4 ∓0.0%
ALL 24.5 24.5 ∓0.0% 24.6 −0.4%

Table 4.21: Word-Error-Rates in % for Combined LSA models.

For the combination of LSA models using INFG interpolation (Table 4.21) a relative
WER improvement on the AMI data of +0.8% is achieved, which is not significant
(p = 0.236) according to a matched pairs test.
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4.6 Summary and discussion

After discussing other studies on the semantics of LSA-based models, dealing with
semantic concepts from different levels, we show that LSA models can cover the concept
of synonymy to a certain extent. Then the mathematical background of LSA-based
modeling is introduced.

We show how to optimize the parameters for interpolated LSA-based language mod-
els and show that simple linear interpolation does not achieve any improvements. With
the INFG interpolation an improvement is achieved.

The comparison between LSA and cache-based models shows that a large amount
of the improvement is due to the repetition of words, but there is also an improvement
that relies on other features of the LSA-based models. So cache-based models cannot
simply replace LSA-based models.

The optimization of similarity exponent and offset is presented and the relation
between offset selection and similarity exponent is investigated. The optimization
of the decay parameter shows that it makes little difference if the LSA model never
forgets or forgets very slowly, but a bigger difference if the model forgets fast.

From the analysis and optimization of LSA-based language models we can conclude
that parameter optimization is crucial for outperforming word-based n-gram language
models by LSA models.

When first interpolating the meeting LSA model with a mixture n-gram model that
is trained on all available data (Table 4.7) no improvements in terms of perplexity is
seen. Our conclusion is that the LSA model does not capture more information than
the n-gram model in this case.

But when training on the same background and meeting data an improvement of
the LSA model over the n-gram model in terms of perplexity is achieved. This shows
that the LSA models capture some additional information compared to the n-gram
model, if trained on the same data. Our analysis also shows that the predictive power
of the models is partly due to the repetition of words, which occurs frequently in
conversational speech.

Since it is not feasible to train one LSA model on all the data the next step is to think
about combinations of LSA models. The most promising technique is the log-linear
INFG interpolation with optimized interpolation weights. A generalized version of the
INFG interpolation method for multiple LSA models is introduced. This generalization
is more flexible in allowing the weighting of the global n-gram influence.

But even with this interpolation only small improvements in terms of perplexity
are achieved. Concerning perplexity it can be concluded that improvements over all
background domains can be achieved, but that an effective interpolation method for
multiple LSA models is still missing.

One possible problem in combining multiple LSA models could be that there are
too many cases where the models give different similarities to the same words and
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contexts. In this case the word entropy could still make a difference with the INFG
method. But with a similar entropy the models would neutralize each other.

Concerning WER significant improvements for some of the background models are
achieved, but no improvements for the combined LSA models and the meeting model.

The significantly different results in terms of WER for different training corpora and
meeting sites suggest that the LSA model combination should be preceded by an LSA-
based matching between meeting sites and training data. A part of this matching could
be a comparison of the semantic spaces of LSA models providing a semantic similarity
metric for comparing two LSA models. In this way models can be combined according
to a clustering of this semantic hyperspace.

In this thesis a new method is introduced for combining multiple LSA models (Def-
inition 4.12). The advantages of this combination are that models can be trained on
large amounts of data, word dependent and model dependent interpolation parameters
can be used, including a model parameter for the n-gram model. The word dependent
parameters are different for each model, such that information about a word contained
in a model is considered. Although the combination only gives a small improvement in
perplexity compared to an interpolated n-gram model, we think that it can be useful
for other data sets or similar domains.

Furthermore LSA-based models are for the first time applied to the meeting domain.
In this domain it is often necessary to combine domain models with background domain
models because only small amounts of domain training data are available (Section 4.5).
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5 WordNet-based semantic relatedness measures in
automatic speech recognition (ASR) for multi-party
meetings

A curious thing about the ontological problem is its simplicity. It can
be put in three Anglo-Saxon monosyllables: ‘What is there?’ It can be
answered, moreover, in a word - ‘Everything’ - and everyone will accept
this answer as true (Quine, 1953a).

5.1 Introduction

In this chapter1 the performance of eight WordNet-based semantic similarity/distance
measures2 for word prediction in conversational speech is evaluated. It is shown that
the WordNet-based models cannot be easily transformed to conditional statistical mod-
els, since WordNet models are based on a (local) concept of semantic relatedness that
is based on the relatedness of two words. Nonetheless these models can be combined
with standard word-based n-gram models to rescore N -best lists.

In language modeling the concept of perplexity is used to measure the performance of
models. Since this concept is based on a probability distribution, a different evaluation
metric is used in this chapter. First the performance of different WordNet-based
relatedness measures is evaluated, then the Word-Error-Rate (WER) on meeting data
is computed for the best performing measures.

This investigation starts with conversational telephone speech data, and then switches
to multi-party meetings. Since the second type of data is similar to the first type, this
thesis assumes that the performance results from 2-party conversational speech can
be transferred to multi-party meetings. For the evaluation of the relatedness mea-
sures conversational telephone speech data is used. The best performing measures are
applied to Automatic Speech Recognition (ASR) for multi-party meetings.

A ranking of the different WordNet measures is given, which shows that the per-
formance of the measures differs significantly for noun and verb prediction. Varying
dialog contexts and cross part-of-speech comparison are used.

Text-based semantic relatedness measures can improve word prediction on simulated
speech recognition hypotheses as Demetriou et al. (2000, 1997) has shown. Demetriou
et al. (2000) generated N -best lists from phoneme confusion data acquired from a

1Parts of the content of this chapter were first published in Pucher (2005).
2The concept “relatedness measure” subsumes “similarity measure” and “distance measure”.
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speech recognizer, and a pronunciation lexicon. Then sentence hypotheses of varying
WERs were generated based on sentences from different genres from the British Na-
tional Corpus (BNC). It was shown by them that the semantic model can improve
recognition, where the amount of improvement varies with context length and sen-
tence length. Thereby it was shown that these models can make use of long-term
information, similar to Latent Semantic Analysis (LSA) models. This thesis assumes
that these improvements can also be achieved with N -best lists acquired from a real
speech recognition system, using such models. The additional difficulty that is faced in
this work is the application of these models to conversational speech data and meeting
data.

5.1.1 Word prediction by semantic similarity

The standard n-gram approach in language modeling for speech recognition cannot
cope with long-term dependencies. Therefore Bellegarda (2000b) proposed combining
n-gram language models, which are effective for predicting local dependencies, with
LSA-based models for covering long-term dependencies. WordNet-based semantic re-
latedness measures can be used for word prediction using long-term dependencies, as
in these examples from the CallHome English telephone speech corpus:

(5.1) B: I I well, you should see what the bstudentsc
B: after they torture them for six byearsc in middle bschoolc and high
bschoolc they don’t want to do anything in bcollegec particular.

The notation in this chapter follows Lyons (1995, p. 24) and uses single quotation
marks for words (‘student’), italics for word forms (students), and double quotation
marks for meanings (“student”). If referring to a specific meaning of a word subscripts
are used (“student1”). If referring to one meaning of a word, that can but does not
have to be determined by the context, the subscript i is used (“studenti”). The terms
‘meaning’, ‘concept’ and ‘sense’ are interchangeable. ci is used to refer to concepts.
The notation b c is used to refer to the content words (nouns and verbs) in the context
that can be used for a prediction of the last bracketed word.

In Example 5.1 college can be predicted from the noun context using semantic
relatedness measures, here between students and college. A 3-gram model gives a
ranking of college in the context of anything in. An 8-gram predicts college from they
don’t want to do anything in, but the strongest predictor is students.

(5.2) B: everyone who’s who’s extra busy, of course, you know who’s bdoingc the
bcookingc, like tonight it was Benny and me.

A: mm.

B: I bmeanc e- so all the bpeoplec who are bworkingc.
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In Example (5.2) working can be predicted from people, cooking and doing, since
for verb prediction the verbs and nouns in the context are used.

In addition to such predictions based on semantic relatedness there is another type
of prediction, which relies on WordNet’s morphological analyzer. In these predictions
a word is predicted if the word itself or an inflection of it occurs in the context.

5.1.2 Evaluation method and data

Many different similarity/distance measures for WordNet have been proposed. Here
the performance of these measures for word prediction in conversational speech is
evaluated. These measures are used for N -best list (Table 1.3) speech recognition
hypothesis rescoring.

For the performance evaluation two context measures are defined. The first measure
defines the relatedness of a word and a context (Definition 5.12) The second measure
defines the relatedness between a word, an utterance, and a context (Definition 5.13),
where the whole utterance can be used as an additional context for measuring the
relatedness. For the sake of simplicity the term utterance is used here. In the first
experiments the bag-of-words in a dialog turn is added to the context. In the second
experiments N -best lists are used, whose entries are sometimes utterance-fragments
or utterance-chunks.

To evaluate the performance of the WordNet measures five randomly selected dialogs
from the CallHome English corpus are used. The corpus is automatically tagged using
a 3-gram tagger and the Brown Corpus, and the content words (nouns, verbs) are
extracted. No post-corrections are made. This results in 1316 word tokens and 1271
word types, including 685 nouns and 586 verbs. We are aware that this is a small test
set compared to the meeting test sets (Table 4.8) that contain between 17, 000 and
90, 000 word tokens, but there are several reasons why we think that the results are
still generally valid. First the dialogs are chosen randomly from an evaluation test set.
Second the best performing measures are stable over a number of different conditions
concerning our performance metric for word prediction (Section 5.3.1).

Most relatedness measures do not work across different parts-of-speech, such that
one cannot compute the relatedness between a verb and a noun directly. So cross
part-of-speech comparison is not used in the first run. WordNet has four parts-of-
speech - nouns, verbs, adjectives and adverbs (Fellbaum, 1998, p. 9). This is already
simplified in comparison to the output of most Part-of-Speech (POS) taggers. In the
first experiments only nouns and verbs are used, to be able to compare all measures,
because most measures do not work for adjectives and adverbs.

The aim of this work is to apply the results to multi-party dialogs. Therefore the
whole dialog context (two speakers), as well as the sub-dialog contexts (one speaker)
which are only the monologues, are used. The term ‘monologue’ is used for speech
produced by one speaker, ‘dialog’ is used for two speakers. This usage does not reflect
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the intuitive sense of the terms and is only introduced to differentiate the contexts.
The best performing measures are used for N -best list rescoring. The data used

for rescoring is different from the evaluation data. For rescoring a wider context can
be used than for word prediction, since the performance metric for word prediction
requires an ordering of the whole vocabulary given a context. For the WER experi-
ments N -best lists generated from the decoding of conference room meeting test data
of the NIST Rich Transcription 2005 Spring (RT-05S) meeting evaluation (Table 4.8)
are used. For these experiments nouns, verbs, and adjectives are used, since the best
performing measures allow for this extension.

5.1.3 WordNet semantics

WordNet is organized into synonym sets that are related to each other by different re-
lations. One important relation is “hypernymy” the semantic relation of subsumption.
For two noun senses ci and cj it can be defined by the universally quantified sentence
‘�(∀(x)(ci(x) → cj(x)))’ read as “It is necessary that, if something is a ci then it is
a cj”. ‘�’ is a sentence operator, which means that the sentence is necessarily true
e.g. true in all possible worlds. If the necessity can be established through semantic
analysis, the above sentence is a meaning postulate or analytic truth (Carnap, 1956,
p. 10), simply true through the meaning of its components.3 If this sentence is true
then cj is a hypernym of ci. Normally the term ‘hypernymy’ is used for an asym-
metrical relation, such that ‘�(∀(x)(cj(x) → ci(x)))’ also has to be false for cj to be
a hypernym of ci. Otherwise the two terms would be descriptive synonyms. Lyons
(1995, p.63) distinguishes “descriptive synonyms” and “expressive synonyms”. While
“descriptive synonymity” requires that two concepts can be substituted for each other
in all contexts, the notion of synonymy and synset in WordNet is a bit more open. It
only requires that the concepts are interchangeable in some contexts (Miller, 1998).

5.2 WordNet-based semantic relatedness measures

5.2.1 Definition of the measures

Eight similarity/distance measures from the Perl package WordNet-Similarity written
by Pedersen et al. (2004) are used. The measures are named after their respective
authors. All measures are implemented as similarity measures. RES (Resnik, 1995),
LIN (Lin, 1997, 1998) and JCN (Jiang and Conrath, 1997) are based on the information
content, the measures LCH (Leacock and Chodorow, 1998), WUP (Wu and Palmer,
1994) and PATH use path lengths between two words in the WordNet graph, and

3There are interesting philosophical discussions on the concepts of “analyticity”, “synonymity”, and
“necessity” (Quine, 1953b)(Kripke, 1980, p. 34) that provide a detailed analysis of these concepts.
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HSO (Hirst and St-Onge, 1998) and LESK (Banerjee and Pedersen, 2003) allow for
comparison across POS boundaries.

For the definition of the first three measures one needs to define the concept of
Information Content (IC) and LCS, where

...the LCS of concepts A and B is the most specific concept that is an
ancestor of both A and B. (Pedersen et al., 2004)

In Figure 5.1 common subsumers of the concept “personi” and “supernaturali” are
“causal agenti” and “entityi”. In this case “causal agenti” is the only least common
subsumer between the two concepts. If there are multiple least common subsumers
one has to choose among them by taking the one with the highest IC for example.

“causal agenti” “organismi”

“supernaturali” “personi”

“entityi”

“living thingi”

“physical objecti”

“linguisti” “scientisti” “engineeri”

Hypernym

Hyponym

Figure 5.1: Subgraph of WordNet.

The count of a concept ci, count(ci) is the number of occurrences of the concept in
a corpus. The concept frequency is defined as

Definition 5.1 Concept frequency

freq(ci) = count(ci) +
∑

cj∈sub(ci)

freq(cj) .

sub(ci) are the concepts that are subsumed by ci, that ci is a hypernym or superor-
dinate of. The probability of a concept ci is given by the frequency of ci in the corpus
freq(ci) divided by the total number of concepts in the corpus. The total number of
concepts N is the frequency freq(ck) of the top level concept ck. When a concept is
encountered in the corpus its count is also added to the frequency of the more general
concepts. This is achieved by the recursive Definition 5.1.
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The information content of a concept IC(ci) is defined as the negative log of the
probability of encountering an instance of the concept (Resnik, 1995). The more
specific a concept, the higher its information content.

Definition 5.2 Information content

IC(ci) = − log2(
freq(ci)

N
)

Referring to a concept here, means referring to a sense in WordNet, which is the
sense of a word with a certain POS. WordNet is organized into sets of synonyms. All
words have a POS and most have multiple senses. Let us assume that the ontology
in Figure 5.1 can be mapped one-to-one onto the corresponding words, so forget for a
moment that each word has multiple senses and a POS. Let us further assume that the
2-gram causal agent is an instance of the noun concept “causal agent”, and the 1-gram
engineer is an instance of the noun concept “engineer” (The 1-gram engineer could
also be an instance of the verb concept “to engineer”). Then the following 1-gram
counts and concept counts for the concepts in Figure 5.1 can be derived from parts
of the Hub4-LM96 broadcast news corpus. The counts of a more specific concept like
“person” are added to the counts of a more general concept like “organism”.

concept n-gram count(concept) freq(concept) IC
“entity” 379 218,271 0.00
“causal agent” 1 24,193 0.11
“living thing” 19 48,420 0.22
“physical object” 1 96,822 0.35
“organism” 129 24,265 0.65
“person” 20,922 22,529 0.98
“scientist” 859 859 2.40
“engineer” 732 732 2.47
“supernatural” 56 56 3.59
“linguist” 16 16 4.13

N =218,271

Table 5.1: Counting concepts.

When deriving the IC for the whole WordNet, morphological analysis should be
included, such that engineer and engineers are counted as instances of the concept
“engineer”. POS-tagging should also be included, such that only occurrences of the
noun ‘engineer’ are counted if encountering the noun form. This can be done with
high reliability since morphological analysis and POS tagging at the level where only
types of content words have to be distinguished are reliable.
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In most implementations, including the one used here, there is no word-sense dis-
ambiguation applied before counting concept frequencies. An occurrence of the noun
‘engineer’ adds a count to all the senses of “engineer”. The noun ‘engineer’ has the
following senses in WordNet:

(5.3) 1. engineer, applied scientist, technologist – a person who uses scientific
knowledge to solve practical problems

2. engineer, locomotive engineer, railroad engineer, engine driver – the
operator of a railway locomotive

In principle one would have to decide which sense a word in the corpus has, and then
just increment the count for this sense. Otherwise the direct counts count(ci) are false.
The errors made with the direct counts can be corrected to a certain extent because
the senses are located on different places in the WordNet hierarchy. The different
senses of ‘engineer’ have different subordinate senses, so they indirectly get different
counts from the corpus through their subordinate senses. Now the prerequisites are
given to define the first three measures. The measures are defined on concepts, that
is WordNet senses, and not on words or word forms.

IC-based measures

Because WordNet allows multiple inheritance RES (Resnik, 1995) takes the LCS with
the highest information content. IC(ci) is the information content of ci and LCS(ci, cj)
are the LCS of ci and cj .

Definition 5.3 Resnik similarity measure (RESsim)

relRESsim(c1, c2) = max
cj∈LCS(c1,c2)

(IC(cj))

In this definition RES is a similarity measure. The more similar two concepts, the
more specific there LCS, and the higher their IC. It is easy to transform this measure to
a distance measure, either by taking the probabilities instead of the log-probabilities,
or by calculating the maximum IC, which is − log2(

1
N ) and subtracting the original

IC. The Information Vacuum (IV) of a concept ci is defined as

IV(ci) = − log2(
1
N

)− IC(ci) = log2(freq(ci)) .

The RES measure can then be defined as a distance measure.

Definition 5.4 Resnik distance measure (RESdist)

relRESdist
(c1, c2) = min

cj∈LCS(c1,c2)
(IV(cj))
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The higher the IC of the LCS of two concepts is, the lower is there IV, and the
smaller is there distance.

The JCN (Jiang and Conrath, 1997) measure additionally uses the information con-
tent of the concepts that are compared. The distance between two concepts is defined
as

Definition 5.5 Jiang and Conrath distance measure (JCNdist)

relJCNdist
(c1, c2) = IC(c1) + IC(c2)− 2(relRESsim(c1, c2)) .

With a similar reasoning as before the JCN measure can be converted into a simi-
larity measure. The idea of this measure is that it is important to include the distance
between the IC of the involved concepts. Since it is always sure that if cj ∈ LCS(c1, c2),
then IC(cj) 6 IC(c1) and IC(cj) 6 IC(c2) the definition does not lead to negative dis-
tances.

Word1 Word2 Similarity
paper paper 1.000
paper houses 0.476
paper house 0.476
paper writing 0.228
paper activity 0.178
paper equipment 0.143
paper content 0.135
paper division 0.129
paper body 0.120
paper people 0.111
paper sports 0.109
paper year 0.100
paper airplane 0.100
paper stay 0.099
paper motor 0.096
paper distance 0.092
paper time 0.091
paper bike 0.091
paper mode 0.088
paper comments 0.088

Table 5.2: 20 highest JCN similarities for the noun ‘paper’ and other nouns in an
N -best list history.
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Table 5.2 shows the 20 highest JCN similarities for the noun ‘paper’ and other nouns
taken from N -best list histories in the RT05-S test data (Table 4.8). The word-sense
disambiguation that is implicit in this comparison takes the senses of the words that
maximizes the similarity (Definition 5.11).

The LIN (Lin, 1997, 1998) similarity measure uses the previous definitions in a different
fashion.

Definition 5.6 Lin similarity measure (LINsim)

relLINsim(c1, c2) =
2(relRESsim(c1, c2))
IC(c1) + IC(c2)

Suppose the LCS stays fixed, and the concepts one wants to compare get more
specific, so there IC increases. In this case the similarity decreases, because the LCS
gets more and more abstract in relation to the concepts. To increase the similarity
the distance between LCS and concepts must decrease.

Path-based measures

The PATH measure uses the shortest path between two words in the WordNet graph.
This measure is a distance measure. Two concepts are semantically more similar, the
shorter the path between them. To convert this distance into a similarity measure,
one just has to take the longest possible path, measured using the number of nodes,
which is two times the depth D of the WordNet graph. The depth of the WordNet
graph is the longest path from the root node to a leaf node. A leaf node is a node that
has no children. The ‘No’ function returns the number of nodes in a path.

Definition 5.7 Path similarity measure (PATHsim)

relPATHsim(c1, c2) = 2D −No(shortestpath(c1, c2))

The LCH (Leacock and Chodorow, 1998) measure also defines the length of a path
using the number of nodes of the path. The length of the path between members of the
same synonym set is therefore 1. This measure additionally scales by the maximum
path length.

Definition 5.8 Leacock and Chodorow similarity measure (LCHsim)

relLCHsim(c1, c2) = − log2(
No(shortestpath(c1, c2))

2D
)

81



5 WordNet-based semantic relatedness

The WUP (Wu and Palmer, 1994) measure uses the number of nodes No(path(ci, cj)
on the path between ci and cj , and the root node of the WordNet graph (root). It is
defined as

Definition 5.9 Wu and Palmer similarity measure (WUPsim)

relWUPsim(c1, c2) =
2(No(path(root, lcs)))

No(path(c1, lcs)) + No(path(c2, lcs)) + 2(No(path(root, lcs)))

where lcs = LCS(c1, c2). This measure takes into account the distance of the two
sense nodes to their LCS, and the distance between the LCS and the root node. The
similarity decreases when the distance between the sense node and their LCS increases,
and it decreases also slowly with the increase of the distance between LCS and root
node.

“causal agenti”

“supernaturali”

“entityi”

No(root, lcs) = 2

“scientisti”

No(c1, lcs) = 2

No(c2, lcs) = 3

Figure 5.2: Another subgraph of WordNet with LCS and root node.

The graph in Figure 5.2 shows the necessary nodes and paths to measure the sim-
ilarity of the concepts “supernaturali” and “scientisti” in this graph. The concept
“causal agenti” is the LCS of the two concepts, “entityi” is the root node. The WUP-
similarity between the two concepts is therefore 4

9 = 0.444. The minimum number of
nodes in a path between two different nodes is 2, the minimum number of nodes in a
path between a node and itself is 1. This assures that the definition is well defined.
Otherwise it would not be defined between the root node and itself.

Measures for cross POS comparison

Relatedness measures that can compare words with different POS, like verbs and
nouns, are especially useful. They can be used even with short contexts since they
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can use all content words in the context. Some of them are also computationally very
efficient.

The LESK measure was originally introduced by Lesk (1986) for word sense disam-
biguation. The basic idea is to define the semantic similarity between two concepts,
by using the glosses/definitions of the concepts. Example 5.4 shows two glosses, one
for the word ‘train’ and one for the word ‘bus’.

(5.4) • train – public transport provided by a line of railway cars coupled together
and drawn by a locomotive.

• bus – a vehicle carrying many passengers; used for public transport.

The original LESK (Lesk, 1986) measure derives a semantic similarity score by
simply counting the common word forms in the glosses. In this case the similarity
score between these two senses of ‘train’ and ‘bus’ is 2. Function words (a, by, of,
and, for) are ignored and can be filtered by providing a list of them. Remember that
the basic semantic relatedness measures are defined on senses and not words or word
forms. This is called the matching coefficient (Manning and Schütze, 1999, p. 299)
and is defined as | X ∩ Y |, where X and Y are the sets of all content words in the
glosses.

Another possible way to make the comparison is the so-called Jaccard coefficient,
which is used in Demetriou et al. (2000) for rescoring of simulated N -best lists. It is
defined as |X∩Y |

|X∪Y | . For Example 5.4 the similarity value of the Jaccard coefficient is
2
17 = 0.117. This measure also takes into account the length of the glosses, and there-
fore does not boost the similarity of longer glosses. Manning and Schütze (1999, p. 299)
gives three more definitions for semantic similarity by overlap of glosses/definitions.

The adapted LESK similarity measure that is used here, was introduced by Banerjee
and Pedersen (2003). It extends the original measure in two ways. Taking again the
example of ‘train’ and ‘bus’ one can see that they have a 2-gram in common, namely
public transport. It is less likely for two definitions having a 2-gram in common than
having a 1-gram in common.

Therefore one should give senses a higher similarity if they have a phrase overlap.
This is taken into account in the extended LESK measure. This extended measure
uses additionally not only the glosses of the compared senses, but also the glosses of
related senses in the WordNet graph.

Table 5.3 shows the 20 highest LESK similarities for the adjective ‘reliable’ and
other words taken from an N -best list history. Implicit word-sense disambiguation is
achieved by taking those senses of the words that have the highest similarity (Defini-
tion 5.11).
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Word1 Word2 POS2 Similarity
reliable reliable Adj. 1.000
reliable better Adj. 0.230
reliable know Verb 0.208
reliable process Noun 0.174
reliable people Noun 0.086
reliable make Verb 0.066
reliable talk Verb 0.062
reliable were Verb 0.053
reliable are Verb 0.053
reliable going Verb 0.050
reliable was Verb 0.048
reliable am Verb 0.048
reliable is Verb 0.048
reliable good Adj. 0.041
reliable recant Verb 0.039
reliable okay Adj. 0.034
reliable red Adj. 0.028
reliable differs Verb 0.025
reliable first Adj. 0.025
reliable close Adj. 0.023

Table 5.3: 20 highest LESK similarities for the adjective ‘reliable’ and other words in
an N -best list history.

The HSO (Hirst and St-Onge, 1998) measure defines the strength of a relation be-
tween two words. It takes the length of an allowed path between two words (allowed-
pathlength) and the number of changes of direction (dirchange) into account. A path
can go through multiple relations like hypernymy, antonymy and so on, where each
relation has a direction associated with it, which is either horizontal, down, or up. A
path is allowed if it is of a pattern defined in Hirst and St-Onge (1998) and not longer
than five links.

Extra-strong and strong relations get a fixed relatedness. An extra-strong relation
holds between a word and itself. A strong relation holds between two words if they
have a sense in common, or are horizontally related, or if one word is a phrase that
includes the other and they are related. The similarity is defined in Definition 5.10
where C and k are constants. If there is no relation between two words, the relatedness
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is 0. Definition 5.10 is taken from Budanitsky (1999).

Definition 5.10 Hirst and St-Onge similarity (HSOsim)

relHSOsim(c1, c2) =


2C if strong(c1, c2),
3C if extra strong(c1, c2),
0 if no relation,

(C − allowedpathlength− k(dirchange)) otherwise.

5.2.2 Word context relatedness

Since the semantic relatedness of a word and a context shall be computed a word-
context relatedness measure that uses the WordNet measures is defined. For the first
evaluation a slightly modified version of the definition in Kozima and Ito (1995) is
used. They used a semantic vector space, so they could directly define the distance
between two words in context dist(w,w′, C) by using the vectors in C to transform
the original vector space and taking the Euclidean vector distance between w and w′

in the transformed vector space. A context C is a multiset consisting of the previous
δ words in the dialog, where δ is the context width. A multiset is a set, where an
element can appear more than one time. A multiset can be represented as a standard
set by attaching a counting index to each word that is added to the context. The
cardinality of the multiset is the cardinality of such a representation. An ordered list
could be used to also include the position of a word in the context.

For this work rel(w,w′) is a relatedness between words, based on one of the WordNet-
based relatedness measures between senses. For the following definitions of word-
context, word-utterance-context measures and so on, a different definition results,
depending on which basic relatedness measure between senses is applied.

Until now all relatedness measures were defined on concepts/senses/meanings. This
is extended to words. S(w) are the senses of word w.4

Definition 5.11 Word-word relatedness (similarity)

rel(w,w′) = max
ci∈S(w) cj∈S(w′)

rel(ci, cj)

In case of a distance measure the relatedness has to be minimized instead. The
purpose of this definition is twofold. First it defines the semantic relatedness of two
words. Second it defines word-sense disambiguation. It is the special case where just

4Later when it is necessary to determine the exact position of a word in a text, indices are used
with words. Here it is not yet necessary since the measures are defined for words and word forms
no matter where they are appearing. For the senses, indices are used, since they have a unique
position in the WordNet hierarchy.
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one word is used as a context for disambiguation (Pedersen et al., 2005). Ideally the
sense of a word in a text is also the sense that maximizes the semantic similarity of
the word and the context, minimizes the semantic distance.

The relatedness of a word and a context (relW) is defined as the average of the
relatedness of the word and all words in the context.

Definition 5.12 Word-context relatedness

relW(w,C) =
1
| C |

∑
wi∈C

rel(w,wi)

The maximum similarity is used in Definition 5.11 when word-sense disambiguation
is performed to find the senses of the words. In Definition 5.12 the average is used to
take all words in the context into account, otherwise word repetitions always get the
highest similarity.

5.2.3 Crossing part-of-speech (POS) boundaries

It is interesting to evaluate the measures that allow cross POS comparison separately.
For these measures Definition 5.12 can be used directly. Since the width δ of the
context does not change, the history that is taken into account is shorter. If just
nouns are considered and the last δ nouns are found within the last k words in the
history, k will be smaller if the last δ nouns and verbs are considered. k is then the
length of the history that is spanned by the last δ content words. The number of
verbs and nouns in an utterance is higher than the number of verbs or nouns alone.
Consequently the history is shorter if cross POS comparison is used and δ is fixed.

This is an advantage or disadvantage depending on the application. If there is only a
short context available, for example within a dialog system, the cross POS comparison
is beneficial. For the case of conversational (telephone speech and meetings) speech,
there is always a context that is long enough for all measures.

5.2.4 Word utterance (context) relatedness

The performance of the word-context relatedness (Definition 5.12) shows how well the
measures work for algorithms that proceed in a left-to-right manner, since the context
is restricted to words that have already been seen. For the rescoring of N -best lists
it is not necessary to proceed in a left-to-right manner. The word-utterance-context
relatedness can be used for the rescoring of N -best lists. This relatedness does not
only use the context of the preceding words, but the whole utterance. In the case
of rescoring of N -best lists the relatedness of a list element with the word-context or
word-utterance-context is computed, and then the best combination of this score with
the language model score is searched.
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Suppose U = 〈w1, . . . , wn〉 is an utterance. Let pre(wi, U) be the set
⋃

j<i wj and
post(wi, U) be the set

⋃
j>i wj . Then the word-utterance-context relatedness is defined

as

Definition 5.13 Word-utterance-context relatedness

relU1(wi, U, C) = relW(wi,pre(wi, U) ∪ post(wi, U) ∪ C) .

In this case there are two types of context. The first context comes from the respec-
tive dialog or monologue, and the second context comes from the actual utterance.
To make an implementation of this definition efficient it is useful to cache already
computed relatedness values. In Definition 5.13 the same relations are used multiple
times. Another definition is obtained if the context C is eliminated (C = ∅) and just
the utterance context U is taken into account.

Definition 5.14 Word-utterance relatedness

relU2(wi, U) = relW(wi,pre(wi, U) ∪ post(wi, U))

Both definitions can be modified for usage with rescoring in a left-to-right manner
by restricting the contexts only to the preceding words.

Definition 5.15 Word-utterance-context relatedness 1

relU3(wi, U, C) = relW(wi,pre(wi, U) ∪ C)

Definition 5.16 Word-utterance relatedness 1

relU4(wi, U) = relW(wi,pre(wi, U))

5.2.5 Defining utterance coherence

There are two basic types of connectedness of a text (Lyons, 1995, p. 263). Cohesion
and coherence. Cohesion focuses on the form of a text considering the use of pronouns,
particles, conjunctions and the like. Coherence deals with the connectedness of the
content of a text. In Example 5.1 they and them in the second utterance refer to
students and those people that torture them in middle and high school. In the context
of this example these are probably teachers, since the second utterance also expresses
that the students lost the interest in doing something in college, and teachers exist in
middle and high school. If it turns out that the anaphora they and them have other
referents, the text is less coherent or incoherent.

Concerning the senses of the words in Example 5.1, it can be derived from the
assumption of coherence that the senses of the words ‘school’ and ‘student’ are related.
The senses of the noun ‘student’ and some of the senses of ‘school’ in WordNet are
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(5.5) 1. student, pupil, educatee – a learner who is enrolled in an educational
institution

2. scholar, scholarly person, bookman, student – a learned person (especially
in the humanities); someone who by long study has gained mastery in one
or more disciplines

(5.6) 1. school – an educational institution

2. school, schoolhouse – a building where young people receive education

3. school – a body of creative artists or writers or thinkers linked by a
similar style or by similar teachers

4. school, shoal – a large group of fish

If the word-word relatedness (Definition 5.11) is applied to the two words using the
LESK measure, the highest relatedness is found between the first senses. These are
the correct senses in this context, so the implicit word-sense disambiguation works for
this example. The text/utterance is incoherent, if ‘student’ is used with the sense (1)
in the first utterance of Example 5.1 and ‘school’ is used with sense (3) or (4).

This also shows a weakness of the word-sense disambiguation used here. If ‘school’
is used with the (4th) sense, the disambiguation fails. The problem can be solved by
taking a wider context for disambiguation.

Using Definitions 5.13-5.16 different concepts of utterance coherence can be defined,
that cover parts of the linguistic concept of coherence. The coherences are not used in
the first experiments where just the relatedness of each word to its context is computed.
But for the rescoring they are used, when a score for each element of an N -best list is
needed. U is again an utterance U = 〈w1, . . . , wn〉. Since an utterance is represented
as an n-tuple here, n can be taken as the cardinality of the utterance | U |.

Definition 5.17 Inner-utterance-context coherence

coherenceU1(U,C) =
1
| U |

∑
w∈U

relU1(w,U,C)

The first semantic utterance coherence measure (Definition 5.17) is based on all
words in the utterance as well as in the context. It takes the mean of the relatedness
of all words. It is based on the word-utterance-context relatedness (Definition 5.13).

Definition 5.18 Inner-utterance coherence

coherenceU2(U) =
1
| U |

∑
w∈U

relU2(w,U)
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The second coherence measure (Definition 5.18) is a pure inner-utterance-coherence,
which means that no history apart from the utterance is needed. Such a measure is
very useful for rescoring, since the history is often not known or because there are
speech recognition errors in the history. It is based on Definition 5.14.

Definition 5.19 Utterance-context coherence

coherenceU3(U,C) =
1
| U |

∑
w∈U

relU3(w,U,C)

The third (Definition 5.19) and fourth (Definition 5.20) definition are based on
Definition 5.15 and 5.16, that do not take future words into account.

Definition 5.20 Utterance coherence

coherenceU4(U) =
1
| U |

∑
w∈U

relU4(w,U)

5.2.6 Relatedness to probability conversion

In language model adaptation for speech recognition, word-based n-gram models are
often interpolated with other statistical language models to cover more syntactic, se-
mantic and pragmatic information than is covered by the n-gram models alone (Bel-
legarda, 2004). To interpolate the Wordnet-based models with word-based n-gram
language models, the relatedness functions must be converted to conditional probabil-
ities. Here this probability is defined for a given vocabulary V as

Definition 5.21 Relatedness to probability conversion

pwordnet(w1 | w2) =
rel(w1, w2)∑|V |
i=1 rel(wi, w2)

.

The conditional probability of a word given a context (e.g. multiple words) can be
easily derived from the above definition. Since the computation of the relatedness for
all words in the vocabulary is computationally expensive, it is most efficient to approx-
imate

∑|V |
i=1 rel(wi, wj). This can be done with a Monte Carlo method by randomly

selecting a portion of the vocabulary, computing the mean relatedness and deriving
the total relatedness from the mean. For each word wj in the vocabulary one sum
has to be estimated. If V is the vocabulary and | V |= k then k sums need to be
estimated.

Our experiments (Pucher and Huang, 2005; Pucher et al., 2006a,b) and other work
on LSA-based models (Deng and Khudanpur, 2003; Coccaro and Jurafsky, 1998),
which basically also rest on a concept of semantic relatedness (the cosine similarity),
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show that linear interpolation of semantic and n-gram models is not useful. Therefore
one can try for example a log-linear interpolation. Suppose that pn-gram is the n-
gram model, and ∝ denotes normalization over the whole vocabulary. The log-linear
interpolation can be defined as

Definition 5.22 Log-linear interpolation of WordNet and n-gram models

p(w | C) ∝ pwordnet(w | C)λ pn-gram(w | C)1−λ .

The normalization term is given by the sum
∑|V |

i=1 pwordnet(wi | C)λ pn-gram(wi |
C)1−λ. Even if restricting the context to one word, which one can do since the Word-
Net probability can be broken down to conditional probabilities of a word given an-
other word, it is necessary to estimate the sum for each word given any other word.
Starting with k sums, it is now necessary to estimate k2 sums. At this stage it is
easier to estimate the k2 word-word similarities and start from there. This is however
computationally very expensive given a vocabulary of around 40, 000 words.

Another possibility is to use the maximum entropy framework to estimate condi-
tional probabilities. Within the conditional maximum entropy framework it is possible
to create a language model using a mixture of features (Rosenfeld, 1994). A union
of n-gram and Wordnet-based semantic features is a good starting point. A possi-
ble WordNet feature, which is an adaptation of an LSA feature defined in Deng and
Khudanpur (2003), is

Definition 5.23 WordNet relatedness feature

fwordnet =

{
1 if relW(w,C) > θ and words are comparable,
0 otherwise.

The condition that the words be comparable reflects that these measures can only be
applied to content words, and that certain measures are more useful than others. This
condition can be checked using POS tagging. Nouns for example should be compared
with nouns; verbs and adjectives with nouns, verbs and adjectives. The expectation
of this feature (E[fwordnet]) can be derived from a large training corpus. If this feature
is taken with a realistic context width of 5–10 words, it is likely that two instances of
the same word will not appear in the same context.

Since the contexts C for different words are almost surely different, one has to
estimate a separate parameter for each word in the training corpus. For each word w in
the training corpus, relW(w,C) needs to be evaluated, which is again computationally
very expensive. One solution to this problem is to restrict the size of the context
to the previous, or the two previous content words. This results in a trigger-based
approach where word trigger pairs or triples are defined. With LSA-based features it
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is possible to reduce the number of contexts by clustering the document space (Deng
and Khudanpur, 2003).

So one viable approach is to skip the conversion into a probability distribution and
apply the relatedness measures directly to N -best lists, as in Demetriou et al. (2000).

5.3 Experiments

5.3.1 Performance measuring

To estimate the word prediction performance of the WordNet measures, the method
described in Kozima and Ito (1995) is used. This performance metric is used, because
it allows for a comparison of differently scaled semantic relatedness measures. To
measure the word prediction performance for a word wp in a context C, the vocabulary
V = {w1, . . . , wn} of the whole dialog is ordered according to context relatedness, such
that

Definition 5.24 Word-context relatedness ordering

relW(wi1 , C) > relW(wi2 , C) > · · · > relW(win , C)

is an ordering of all n words of the vocabulary V , given the context C. For distance
measures the ordering has to be reversed. Suppose ip is the position of word wp in
this ordering. The performance for wp is

Definition 5.25 Performance measure

perf(wp) =
| V | /2− ip
| V | /2

.

If the word wp occurs in the first half of the ordered vocabulary, the performance
score is positive. If it occurs in the second half it is negative. The performance scores
are between −1 and 1. If ip is randomly selected the mean score is 0. A positive
mean score shows that a relatedness measure performs better than random on the
task of word prediction. Using this metric, performance scores for the eight different
WordNet-based relatedness measures that were previously defined are computed.

5.3.2 Evaluation results for word-context relatedness

For the first evaluation cross part-of-speech comparison is not used, the Brown corpus
is taken for the information content files that are needed for the LIN, RES, and JCN
measures, and the whole dialog (both speakers in each dialog of the CallHome corpus)
is taken as the context.
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Rel. POS Performance Mean perf.
JCN N 0.387 0.385
JCN V 0.383
WUP N 0.299 0.313
WUP V 0.328
PATH N 0.333 0.307
PATH V 0.281
LESK N 0.299 0.288
LESK V 0.277
RES N 0.290 0.288
RES V 0.286
HSO N 0.254 0.227
HSO V 0.201
LCH N 0.250 0.225
LCH V 0.200
LIN N 0.220 0.194
LIN V 0.169

Table 5.4: Word-context relatedness performance.

The context is restricted to a context-width of δ = 5 in all performance evaluations.
So the last 5 content words of the whole dialog are taken as the context in these first
experiments. Since the context is that short a decay parameter is not used. Such a
parameter gives words in the recent history a higher weight. Five dialogs from the
CallHome English corpus are used, and the average performance value for verbs and
nouns is computed. Tests with δ = 10 and δ = 15 showed that the average scores
are slightly higher, but the ranking of the measures did not change. Since the reason
for these performance evaluations is to give a ranking of the measures and due to
the computationally expensive reordering of the whole vocabulary, the lowest context-
width is taken.

The evaluation tables contain the name of the relatedness measure, the part-of-
speech (N for noun and V for verb), and the mean performance values for each part
of speech. Cross POS comparison is not used so the lines in Table 5.4 give the per-
formance for nouns when predicted from the noun context and verbs when predicted
from the verb context. The last column contains the mean performance value for
nouns and verbs together and determines the ranking of the measures. As one can
see from Table 5.4 the measure JCN has the best overall performance, followed by
the measures WUP and PATH which are based on path lengths (See Section 5.3.6 for
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significance results).
It is surprising that the WUP and PATH measures, which are only based on path

lengths have such good performance scores compared to the RES measure that also
includes corpus information. The good performance of the JCN measure was already
reported by Budanitsky and Hirst (2001) for the task of malapropism correction.

Figure 5.3 shows the mean performance of some measures for the five dialogs, for all
dialogs, and for noun and verb measures together. It can be seen that the performance
varies from dialog to dialog but the ranking of the measures is quite stable. Since the
performance score is always bigger than zero, we can conclude that the measures
perform better than random.
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Figure 5.3: Word-context relatedness performance.

In Figure 5.3 one can also see that there is a performance pattern. All measures have
lower performance scores on the first two dialogs and a higher score on the fifth dialog
(Except for the VERB-lin and VERB-res measure). The NOUN-jcn and VERB-jcn
measures are the top performers under the noun and verb measures for all the dialogs.

5.3.3 Evaluation results for crossing POS boundaries

Table 5.5 shows the results for the two measures that allow cross part-of-speech com-
parison, namely HSO and LESK, for which the context contains nouns and verbs.

The LESK measure performs very well for verbs and performs worse than random for
nouns, which gives an overall performance score of 0.212. The prediction of verbs from
a context containing nouns and verbs performs better than from a context containing
only verbs, which can be seen by comparison with the performances of verb measures in
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Rel. POS Performance Mean perf.
LESK N -0.002 0.212
LESK V 0.427
HSO N 0.068 0.186
HSO V 0.305

Table 5.5: Word-context relatedness performance across POS.

Table 5.4. Especially the LESK measure for verbs using only a verb context performs
worse (0.277 versus 0.427).

The prediction of nouns from a mixed context performs worse than from a context
containing only nouns, which is shown in the noun column of LESK in Table 5.5. This
is again true for all noun measures that use only noun contexts (Table 5.4).

The HSO measure also performs worse for nouns when using a mixed context (see
Table 5.5) than only a noun context, and better for verbs when using a mixed context.
For verb prediction using a mixed measure also HSO is outperformed by the LESK
measure.

So it is shown that the relatedness of nouns to a noun context is highest and the
relatedness of verbs to nouns and verbs is highest using the LESK measure. This
measure is based on extended WordNet glosses. It should be possible to explain the
facts concerning performance using facts about WordNet glosses or lexical semantics
in general. One possible explanation is that nouns exhibit a strong internal ordering
and hierarchy, which is exemplified by the hypernym-hierarchy. Verbs are lacking such
an ordering.

5.3.4 Evaluation results for word-monologue-context relatedness

This section evaluates the performance of the measures for different dialog contexts.
The word-context relatedness is used, and the context is restricted to the monologues
(The performance of word-context relatedness for the whole dialog is already shown
in Table 5.4).

As Table 5.6 shows, the performance decreases in general when using just the mono-
logue context, relative to Table 5.4, which uses the whole dialog as a context. Only
the JCN measure still performs quite well when using just the monologue.

The good performance of JCN is somewhat surprising, when assuming that the
semantic coherence across the whole dialog is higher than just within the monologue.
Partly it can be explained by bigger monologue chunks in the dialogs as can be seen
in Example 5.1 and 5.2.
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Rel. POS Performance Mean perf.
JCN N 0.334 0.315
JCN V 0.297

PATH N 0.256 0.222
PATH V 0.188
LCH N 0.249 0.217
LCH V 0.186
LESK N 0.237 0.210
LESK V 0.183
HSO N 0.230 0.200
HSO V 0.171
RES N 0.214 0.183
RES V 0.153
LIN N 0.192 0.167
LIN V 0.143

WUP N 0.184 0.164
WUP V 0.144

Table 5.6: Word-monologue-context relatedness performance.

5.3.5 Evaluation results for word-utterance-context relatedness

In this section Definition 5.13 is used to measure the performance of word prediction
using a context and an utterance.

When using this measure the context width is δ = 5 plus the number of verbs/nouns
in the utterance the word belongs to. In the experiments in Section 5.3.2-5.3.4 only
the previous δ = 5 content words were used. These content words could come from
the actual utterance or previous utterances. So one expects the performance to be
better with this measure since it uses a wider context. Concerning the overall score
of the best measure this is true. The ordering of the measures slightly changes. The
PATH and RES measure perform better for nouns and verbs, and the LESK measure
performs better for verbs with this definition. The JCN measure still performs well
under this condition (See Section 5.3.6 for significance results).
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Rel. POS Performance Mean perf.
PATH N 0.392 0.398
PATH V 0.405
JCN N 0.367 0.367
JCN V 0.368
RES N 0.344 0.356
RES V 0.369

LESK N 0.247 0.295
LESK V 0.343
LCH N 0.265 0.236
LCH V 0.207
HSO N 0.248 0.221
HSO V 0.195
LIN N 0.220 0.194
LIN V 0.169

WUP N 0.206 0.184
WUP V 0.163

Table 5.7: Word-utterance-context relatedness performance.

5.3.6 Performance comparison

Noun measures

T-tests for paired samples indicate that the performance values of the PATH measure
using the word-utterance-context and the whole dialog (path d s) are significantly
higher (p < .05,#nouns = 722) than all other noun-related measures, except the
JCN measure using the word-context and the whole dialog (jcn d w). Revealing the
second-highest mean performance, jcn d w performs significantly better than most
other noun-related measures (paired samples t-tests; p < .05,#nouns = 722), except
path d s, res d s, JCN using the word-context of the monologue (jcn m w) and JCN
using the word-utterance-context (jcn d s). There is no significant difference between
path d s, jcn d s and res d s.

For this reason we can conclude that the JCN measure should be used for the
rescoring task, since it is the most robust measure. For the word-context case it is
significantly better than all other word-context based measures. The same is true
for the word-monologue-context case. For the word-utterance-context case there is no
significant difference between the three best performing measures, so the JCN measure
can also be used with this condition.
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Verb measures

According to t-tests for paired samples, LESK using a mixed word-context of the dialog
(lesk cross d w) performs significantly better than all other verb-related measures (p =
.05,#verbs = 597), except path d s, which has the second-highest mean performance
value.

Although the LESK measure does not outperform the PATH measure under certain
conditions, there are still reasons to prefer the LESK measure. The first is compu-
tationally less expensive than the second. Furthermore it can be used, at least the
simple version of it, with dictionaries other than WordNet. For these reasons the lesk
measure is used for the rescoring task.

5.3.7 Word-error-rate (WER) experiments

For the rescoring experiments test data from the NIST Rich Transcription 2005 Spring
(RT-05S) meeting evaluation (Table 4.8) is used. N -best lists are generated using the
combined n-gram language model (Table 4.21). The first-best element of the previous
N -best list is added to the context, like in the rescoring with LSA-based models
(Section 4.5.6).

Before applying the WordNet-based measures, the N -best lists are POS tagged
with a decision tree tagger (Schmid, 1994). The WordNet measures are then applied
to verbs, nouns and adjectives. Then the similarity values are used as scores, which
have to be combined with the language model scores of the N -best list elements.

For reasons given in the preceding section two different measures are used for verbs
and nouns. The JCN measure is used for computing a noun score based on the noun
context, and the LESK measure is used for computing a verb/adjective score based on
the noun/verb/adjective context. In these experiments adjectives are also included.
In the end there is a lesk score and a jcn score for each N -best list element.

Since a type of log-linear interpolation performed best in the LSA rescoring experi-
ments, a log-linear interpolation method is used for the rescoring based on WordNet,
too. As mentioned in Section 5.2.6 it is computationally expensive to transform a re-
latedness measure to a probabilistic measure. Based on all the language model scores
of an N -best list a probability is estimated, which is then interpolated with the n-gram
model probability as described in Definition 5.22. If only the elements in an N -best
list are considered, log-linear interpolation can be used since it is not necessary to
normalize over all sentences. Thereby one can reduce the computational complexity
of the normalization. Then there is only one parameter λ to optimize, which is done
with a brute force approach. For this optimization a small part of the test data is
taken and the WER is computed for different values between 0 and 1.

In Section 5.3.4 it has been shown that using only the monologue context results in
a performance decrease. For this reason the whole dialog context is used for rescoring.
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Furthermore different utterance and dialog context measures are applied. Finally the
following models are used in the WER experiments.

As a baseline the n-gram mixture model trained on all the available training data
(Table 4.7) is used. It is log-linearly interpolated with the WordNet probabilities.
Additionally to this sophisticated interpolation, solely the WordNet scores are used
without the n-gram scores.

WER experiments for inner-utterance coherence

In this first group of experiments Definitions 5.17 and 5.18 are applied to the rescoring
task. Similarity scores for each element in an N -best list are derived according to the
definitions. The first-best element of the last list is always added to the context. The
context size is constrained to the last 20 elements. Definition 5.17 includes context
apart from the utterance context, Definition 5.18 only uses the utterance context.

No improvement over the n-gram baseline is achieved for these two measures. Nei-
ther with the log-linearly interpolated models nor with the WordNet scores alone. The
differences between the methods in terms of WER are not significant.

WER experiments for utterance coherence

In the second group of experiments Definitions 5.19 and 5.20 are applied to the rescor-
ing task. There is again one measure that uses dialog context (5.19) and one that only
uses utterance context (5.20).

Also for these experiments no improvement over the n-gram baseline is achieved.
Neither with the log-linearly interpolated models nor with the WordNet scores alone.
The differences between the methods in terms of WER are also not significant. There
are also no significant differences in performance between the second group and the
first group of experiments.

5.3.8 Analysis of WER experiments

From the WER experiments one can derive that word prediction performance as it is
defined and measured in this chapter is no good indicator for WER performance. One
reason for the poor performance of the WordNet models on this task could be the low
WordNet coverage of the N -best lists.

For the different meeting sites (AMI, CMU, ICSI, NIST, VT) the percentage of con-
tent words (nouns, verbs, and adjectives) in the N -best lists covered by WordNet lies
between 89% and 92%. To measure this the content words of the POS-tagged N -best
lists are extracted and looked up in WordNet. For content words these numbers are
also influenced by the quality of the POS tagging. For different meetings we get the
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same percentage range. The WordNet coverage for different meetings is between 89%
and 92%.

For different speakers the coverage of content words is between 87% and 100% with
the exception of four speakers that are shown in Table 5.8. The third column contains
the number of content word tokens in the speaker N -best list that are in WordNet,
the fourth column shows the total number of content words in the N -best lists of the
speaker. So there are two speakers that have one N -best list containing two content
words, where one content word is in WordNet.

Speaker ID Coverage in % CWord Tokens in WN Total CWord Tokens
NIST-102 50 1 2
NIST-103 50 1 2
CMU-fYRQGJN 75 57,798 76,145
ICSI-mn007 78 16,091 20,537

Table 5.8: Content words in N -best lists covered by WordNet.

The WordNet coverage of content words can therefore be no reason for the low per-
formance of the WordNet models.

If all words are counted the picture is different. For different meeting sites (AMI,
CMU, ICSI, NIST, VT) the percentage of words in the N -best lists covered by Word-
Net lies between 47% and 48%. At the level of meetings (2 meetings per site) the
percentage of covered words lies between 46 and 49%.

Especially the NIST and ICSI meetings contain speakers that are not well covered
by WordNet. For NIST these are speakers that have very short contributions to the
meeting between 17 and 19 words.

The WordNet coverage for ICSI speakers is shown in Table 5.9. There are a few
speakers that have a very low coverage (25 to 27%). But these few speakers cannot
be the reason for the overall low performance of the WordNet models. What can be a
problem however, is the low overall coverage of N -best lists.

Another reason for the poor performance of the models could be that the task of
rescoring simulated N -best lists, as presented in Demetriou et al. (2000), is signifi-
cantly easier than the rescoring of ‘real’ N -best lists. In the above chapter it was
also shown that WordNet models can outperform simple random models on the task
of word prediction. In the above WER experiments furthermore a 4-gram baseline
model was used, which was trained on nearly 1 billion words. In Demetriou et al.
(2000) a simpler baseline has been used. 650 sentences were used there to generate
sentence hypotheses with different WERs using phoneme confusion data and a pronun-
ciation lexicon. Experiments with simpler baseline models ignore that these simpler
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Speaker ID Coverage in % Word Tokens in WN Total Word Tokens
fn002 25 26 101
me006 26 79 300
mn014 27 7,761 28,187
mn007 33 23,234 68,401
me001 41 138,023 328,738
mn017 43 288,100 668,537
me022 45 284,376 601,369
me026 47 104,850 218,891
me013 48 1,116,548 2,319,871
fe060 50 364,659 728,637
fe016 50 192,778 379,919
me018 50 257,416 507,048
me011 51 225,978 440,917

Table 5.9: ICSI speaker words in N -best lists covered by WordNet.

models are not used in today’s recognition systems.

5.4 Summary and discussion

In this chapter different WordNet-based relatedness measures are introduced. We
show how to define more and more complex relatedness measures on top of the basic
relatedness measures between word senses. These complex relatedness measures are
defined on different contexts.

A ranking of the usefulness of semantic relatedness measures for word prediction in
conversational speech is given. It is shown that there are significant differences in the
performance of these measures and that all measures perform better than random on
this task.

The JCN measure performs best for nouns using the word-context of the whole dialog
or the monologue, and the PATH measure performs best for nouns using the word-
utterance-context of the dialog. The same result for the JCN measure was obtained by
Budanitsky and Hirst (2001) for a different task. The LESK measure performs best
for verbs using a mixed word-context. It can be concluded that different measures
should be used for the prediction of nouns and verbs, and for different contexts. Since
the JCN measure shows the best overall performance for nouns using a noun context
it is used in the WER experiments. For verbs and adjectives the LESK measure is
used with a mixed context.

100



5.4 Summary and discussion

The insight on when to use a mixed content word context and when not, is also in
accordance with counting arguments about the classes of content words. Nouns can
be thought of as an independent hierarchy. Verbs and adjectives are used together
with nouns. Verbs and adjectives have many different nouns they can be used with,
while a certain noun has a smaller number of verbs and adjectives it can be used with.
Therefore it is easier to predict a noun from a noun context and a verb or adjective
from a noun/verb/adjective context.

These results were the basis for an investigation of the use of the best performing
measures for the task of speech recognition hypotheses rescoring for multi-party meet-
ings. The LESK and JCN measures were used for the rescoring of N -best lists. It was
shown that speech recognition of multi-party meetings cannot be improved compared
to a 4-gram baseline model, when using WordNet models. The analysis concerning
WordNet coverage showed that the content words are well covered in WordNet. The
coverage of all words is however smaller.

Other researchers (Demetriou et al., 2000) who reported improvements of WER
using these models used simpler baseline models and synthetic N -best lists. We think
that it is not useful to base a comparison on simpler baselines when much larger models
are already available and actually used.

We think that these prediction models can still be useful for other tasks where only
small amounts of training data are available. Another possibility of improvement is to
use other interpolation techniques like the maximum entropy framework. WordNet-
based models could also be improved by using a trigger-based approach. This could
be done by not using the whole WordNet and its similarities, but defining word-trigger
pairs that are used for rescoring.
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6 Empiricist and rationalist modeling paradigms

Those who have treated of the sciences have been either empiricists or dog-
matists. Empiricists, like ants, simply accumulate and use; Rationalists,
like spiders, spin webs from themselves; the way of the bee is in between:
it takes material from the flowers of the garden and the field; but it has
the ability to convert and digest them (Bacon, 2002, p. 79).

Latent Semantic Analysis (LSA) and WordNet-based models can be subsumed under
the concept of ‘semantic similarity models’. The underlying modeling paradigms are
however different. Approaches in speech and language processing and other fields of
Machine Learning (ML) can be divided into rationalist and empiricist approaches, in
analogy to rationalist and empiricist philosophical theories of human knowledge and
learning.

6.1 Empiricism and rationalism

Knowledge can be defined as justified, true belief, although it is known that exam-
ples can be constructed where these three properties are not sufficient for knowledge
(Gettier, 1963). Rationalists and empiricists have different views on how we can gain
knowledge. According to Markie (2006) a rationalist must adopt at least one of the
following claims. The Intuition/Deduction Thesis, the Innate Knowledge Thesis or
the Innate Concept thesis.

The Intuition/Deduction Thesis: Some propositions in a particular subject
area, S, are knowable by us by intuition alone; still others are knowable by
being deduced from intuited propositions.

The above thesis states that we have access to a priori knowledge by intuition. From
that knowledge we can use valid reasoning to derive other propositions. A subject
area for which the Intuition/Deduction thesis has been adopted is mathematics. A
proposition that Descartes believed to be known by intuition like other mathematical
propositions is the geometric proposition that the three angles of a triangle are equal
to two right angles (Descartes, 1996, p. 45).

The Innate Knowledge Thesis: We have knowledge of some truths in a
particular subject area, S, as part of our rational nature.
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The Innate Knowledge Thesis also states that we have some a priori knowledge.
The difference to the former thesis is that we do not gain this knowledge by intuition,
but have it as part of our nature.

The Innate Concept Thesis: We have some of the concepts we employ in
a particular subject area, S, as part of our rational nature.

The Innate Concept Thesis is equivalent to the former thesis except that it states
that some concepts we have are a priori.

The empiricist on the other hand adopts the following claim:

The Empiricism Thesis: We have no source of knowledge in S or for the
concepts we use in S other than sense experience.

Since the claims are all relativized to a certain domain S, there is only a conflict if
rationalists and empiricists want to provide a foundation for the same domain. It is
consistent to be a rationalist in mathematics, and an empiricist in the natural sciences.
The most debated type of knowledge is our knowledge about the external world.

Manning and Schütze (1999, p. 4) sees a dominance of empiricist approaches be-
tween 1920 and 1960 followed by a rationalist period influenced by the work of Noam
Chomsky and others, followed again by an empiricist period that gained momentum in
the last decades. The recent rise of empiricist paradigms is related to the availability
of increasing amounts of data and more and more computing power to train models
on these data.

The rationalist and empiricist approach to language can be characterized by the
problem of the poverty of the stimulus (Chomsky, 1986, p. 7) as seen by the rationalist
or the contrary richness of the stimulus as seen by the empiricist. The sensory data
that are the stimuli do not provide enough information to account for all language
capabilities, says the rationalist. Therefore the rationalist assumes that a part of
human knowledge about language is fixed in advance and cannot be derived from the
senses.

The empiricist is maybe surprised how the sensory data can account for our highly
complex picture of the world, but nevertheless thinks that there must be a way to
derive this picture from the sensory data without assuming too much fixed knowledge.
According to the empiricist there are only general cognitive abilities at the begin-
ning and most of our knowledge is derived by the senses. Concerning the cognitive
capabilities that are present in the brain empiricism is only gradually differing from ra-
tionalism. Empiricism also assumes some cognitive capabilities as present in the brain,
like association, pattern recognition, and generalization (Manning and Schütze, 1999,
p. 5). Chomsky (1969) observes that Quine (1960, p.83-84) assumes a prelinguistic

104
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quality space with a built-in distance measure in his empirical theory of learning. De-
pending on the nature of this quality space one can come up with different rationalist
theories of innate ideas.

In this thesis two different modeling paradigms are applied to the same task. The
advantages and disadvantages of each approach are discussed. But which analogies
justify us to label one method ‘empiricist’ (LSA) and the other method ‘rationalist’
(WordNet)?

6.2 Rationalist WordNet-based models

WordNet (Fellbaum, 1998, p. 8) is a graph of lexical semantic relations between word
senses. The data was collected by a group of experts.

Rationalism must adopt at least one of the three theses mentioned in Section 6.1.
With an ontology1 like WordNet it is clear that not all concepts in WordNet can
be thought of as innate (Innate Concept Thesis) because that would make learning
impossible. Neither is it possible to think of all propositional knowledge encoded in
WordNet as innate (Innate Knowledge Thesis) or knowable by intuition and deduction
(Intuition/Deduction Thesis).

It does not make sense to have an innate concept of “vacuum cleaner” or proposi-
tional innate knowledge about vacuum cleaners, because if they would not have been
invented, we would still have the innate concept. But concerning the three theses
from the previous section the models based on WordNet can be called ‘rationalist’ if
there is a part of WordNet, be it concepts or propositions, that can be identified as
innate, including all the knowledge that can be derived from it. Another analogy to
rationalism is that the WordNet graph has been created by human experts, and has
not been directly derived from data.

The analogy to the rationalist understanding of human knowledge is that not all
information comes from sensory data, but there is some structure hard-wired into the
perceivers to put structure on the sensory data.

The main disadvantage of the WordNet-based models and rationalism is that the
structure must be given somehow, either through the work of human experts in the case
of WordNet-based models for language modeling, or through a super-human expert in
the case of rationalist models of human knowledge.

In Chapter 5 these rationalist structures are reduced to a binary relation of ‘similar-
ity’. Thereby a lot of information, especially about the inter-connectedness of concepts

1In the philosophical sense an ontology describes the things that really exist, and their rela-
tions (Quine, 1953a). In this sense WordNet is not an ontology, since it is derived from word
usage, and it is not necessary that all words that are used have irreducible referents. WordNet
for example contains the concept of a supernatural being which is a subclass of “causal agent”.
WordNet is neutral concerning ontological decisions, it contains physical objects as well as abstract
objects.
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is lost. This reduction is necessary for the WordNet-based models to be integrated
into the speech recognition framework and be comparable with the empiricist LSA
models. If the ‘empiricist’ LSA model outperforms the ‘rationalist’ WordNet model it
is not a definitive judgment against the latter, since the experimental setting does not
make use of all the information that is encoded in the WordNet graph.

6.3 Empiricist latent semantic analysis (LSA) based models

In LSA-based modeling a word-document co-occurrence matrix is used for the esti-
mation of semantic relatedness between words and documents. The documents that
contain word forms can be considered as sensory data. In this case the data is not
without any structure, since it is already structured into words and documents. But
it has less structure than WordNet. Therefore it is justified to call the LSA modeling
approach ‘empiricist’. The documents also contain a linear structure where one word
is followed by another word. This linear structure is however not used by LSA models.
Documents are treated as bag-of-words.

The epistemological analogy concerning human understanding is that the only avail-
able data for our knowledge of the world is almost unstructured sensory data, and all
knowledge is somehow derived from that sensory data.

The less structure there is in the data the more ‘empiricist’ the modeling approach.
For ML one can however take as much structure as is available. If, for example, there
are also topic boundaries additionally to the document boundaries, these can also be
taken into account. This leads to a continuum from empiricist to rationalist modeling
approaches.

The advantage of these types of models is that almost no structure needs to be
given for the emergence of semantics. The interesting question is how something can
be learned from the data. In Section 4.3 it is shown that LSA models can learn
synonymy to a certain extent, and references to investigations are given that show
how similar methods can learn other semantic concepts.
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7.1 Summary

The main results of this thesis are:

1. In Subsection 4.2.5 a new method for combining multiple LSA models has been
introduced - The model combination is reasonably fast to combine large models.
For the interpolation of all LSA models no improvement in terms of perplexity
or WER has been achieved.

2. In Section 4.4 an extensive analysis of LSA-based models has been conducted,
including the optimization of parameters for combining multiple LSA models -
Different optimization parameters have been analyzed, which have been intro-
duced after LSA models were used in language modeling for the first time. The
model analysis also has shown that LSA models cover semantic concepts like
synonymy to a certain extent.

3. In Section 4.5 LSA-based language models trained on the basis of different back-
ground domain data have been used in ASR for multi-party meetings - Significant
improvements in terms of perplexity and WER over the baseline n-gram models
have been achieved.

4. Subsection 5.2.4-5.2.5 defines new word-utterance context measures and new
utterance coherence measures - Here it has been shown how different context
measures can be defined for rescoring of N -best lists. These context measures
can be used with semantic relatedness measures, like the ones based on WordNet
applied in this work.

5. Subsection 5.3.1-5.3.6 contains an evaluation of WordNet-based relatedness mea-
sures for word prediction in conversational speech - The evaluation has shown
that different measures and contexts should be used for nouns and verbs. Fur-
thermore it has been shown that WordNet-based models can outperform simple
baseline models for this task.

6. Subsection 5.3.4 contains an evaluation of WordNet-based relatedness measures
using the monologue context for word prediction in conversational speech - Here
it has been shown that using the monologue context performs worse than using
the whole dialog context.
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7. Subsection 5.3.7-5.3.7 contains results on the application of different WordNet-
based context measures in ASR for multi-party meetings - It has been shown
how these measures can be applied for the recognition task. No improvements
in terms of WER have been achieved.

The overall results concerning LSA and WordNet models are similar. If the models
are applied to simple tasks (perplexity or word prediction) and if they are compared
to simple baselines, both modeling approaches are able to outperform the baseline
models (n-gram model and random model). But concerning better baseline models,
like the large n-gram model trained on all available data (≈ 1 billion words), and
more complex tasks, like ASR for multi-party meetings, the models do not achieve an
improvement.

From that it can be derived that n-gram models somehow cover the semantic in-
formation contained in the semantic models, if enough training data is available. It
makes a significant difference what the training data size of a language model is. It
can happen that for a small training corpus a modeling method outperforms n-grams,
but for a larger corpus this gain is lost.

In this work 4-gram models were used. If more data is available higher n-gram
models can be used. The most significant improvement is however seen between 1 and
2-gram models, and between 2 and 3-gram models. Between 3 and 4-gram models
the improvement is already smaller. So we think that one has to use at least 3-gram
models to observe the above mentioned effect.

Concerning the size of the training data set one criticism should be mentioned here.
If our language modeling approaches are to be related with human speaker abilities of
word prediction, this relation is lost with the brute-force approach of using more and
more training data. Given the 837 million word tokens that were used for training the
4-gram models, a 20-year old human speaker would have to listen or read 1.33 words
each second, if this database is taken as an empirical basis for language learning. This
is clearly impossible. So human language learning is very efficient concerning the
amount of seen data. In terms of learning time however, human language learning is
less efficient. An n-gram model can be trained within a few hours, while humans need
a much longer training time.

So the dilemma is that there is a simple modeling1 approach that has little relation
to human language learning, and there are more sophisticated modeling approaches
that cannot outperform the simple approach, if enough data is available. Either one
uses the sophisticated approach, and can include linguistic insights, or one uses the
simpler approach and has a robust high-performance model.

What we are still lacking in my opinion is a language modeling method that can
outperform word-based n-gram models on very large training data sets.

1Sophisticated smoothing methods are applied in word-based n-gram language modeling. In this
respect the approach is not simple.
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7.2 Future work

A number of issues are presented, which deserve further analysis. During the work on
this thesis and the review of the literature I have identified other lines of work that
may be worth investigating.

• One interesting domain for future work could be ‘LSA model analysis’. The
cosine similarity could be used to measure the distance and correlation of models
where a close correlation means that the semantic spaces of the models are
close. From that follows another direction for future work on model training by
selecting appropriate web data that fits well the domain. This could be achieved
by selecting web data based on n-gram counts, training an LSA model with this
web data, and comparing this model with the domain model.

• Concerning the WordNet models it would be interesting if the performance re-
sults for different contexts and measures are valid in other domains of research
like information retrieval.

• It would also be interesting to know how n-gram language models cover linguistic
information. It is known that n-gram models cover linguistic relations at all levels
of linguistics. Two questions arise. Exactly which linguistic relations are covered
by n-grams? What is the relation between these linguistic relations, the training
data size, and the size of the n-gram context n?

• Since no improvements over the large 4-gram baseline have been achieved with
neither LSA nor WordNet models, combinations of LSA and WordNet models
were not investigated. But such a combination could still be useful for other
tasks like information retrieval or word-sense disambiguation.

7.3 An afterthought

At the end of this thesis I would like to add some thoughts concerning the availability
of resources. For me it was possible to undertake this work because I had access to
the speech recognizer at ICSI.

Large vocabulary speech recognition research is focused on large systems. One can
only do the research with a system at hand. This means also that there is a good part
of engineering work in this type of research, which is also illustrated in the appendix.
This resembles the situation in fundamental physics, where one may need a particle
accelerator to run specific experiments. The dependence on large systems makes it
difficult for some people to participate in this research.

I think that it would be beneficial for the community, if acoustic models and language
models trained on large amounts of data would be provided to the public. In this way
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a common database would be created for research, and it would be possible for more
groups of researchers to participate in this interesting field.
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A LSA modeling toolkit

This chapter describes the Latent Semantic Analysis (LSA) language modeling toolkit,
that is implemented in C and is available from the website http://userver.ftw.at/

~pucher/resources.htm.

A.1 Installation

Change the variable TCLLIB=/usr/lib/libtcl in ../src/Makefile to point to your
tcl library. Go to ../src and type make. This will create the programs lsalm,
trainmodel and ngram-count. In this version only the i686 architecture is supported.
For other architectures (solaris) get the Stanford Research Institute Language Mod-
eling (SRILM) (Stolcke, 2002) libraries.

A.2 Usage

A.2.1 Training

To train an LSA model use:

trainmodel -data train.data Data file containing document boundaries
-vocab train.vocab Vocabulary file. Each word in the

vocabulary must appear in the data file
-lap2 lap2file Lap2 file containing parameters for SVD.

The two integer values may not
be bigger than the number of documents.

-docbound dbound The document boundary string
-output lsa-train Basename for output files

To see all parameters of trainmodel call trainmodel -help. To train an n-gram
model use the ngram-count program documented on the SRILM website (http://
www.speech.sri.com/projects/srilm/).

A.2.2 Testing

To test an LSA model use:
To test an n-gram model skip the first three parameter of the lsalm program in

the above example. An introduction to ngram and ngram-count is found in Stolcke
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lsalm -lsamodel lsa.term.entrop Term entropy lsa model file
-interpolate infg Interpolation method
-docbound dbound The document boundary

string set in quotes. If not set
sentence boundary is used.

-ppl evalfile File to compute perplexities
-lm train-ngram.gz Language model
-order 4 n-gram model order
-debug 2 > lsa-infg-evalfile Debug and output

(2002). To see all parameters of lsalm call lsalm -help. The following parameters
are lsalm-specific.

-lsamodel: term-entropy lsa model file
-modelname: modelname for html output
-lambdangram: ngram model weight for linear, log-linear and infg interpolation.
-lambdalsa: lsamodel weight for linear, log-linear and infg interpolation.
-binmodel: binmodel file
-nonorm: do not use normalization for loglin and infg interpolation
-1besthist: add 1-best of last utterance to pseudodoc history, for rescoring
-lsaslice: maximum probability part for lsa models for infg interpolation
-nosqrts: do not use square root of Singular Values
-initsent: init pseudodoc at beginning of sentence
-html: output html comparison file use with -debug 2
-docbound: document boundary
-decay: weight for lambda decay in (0,1]
-exp: exp for similarity smoothing
-interpolate: interpolation method for lsa and n-gram [infg, loglin]
-zentropmin: replace zero entropies by this value
-skipzentrop: delete zero entropy words from lsa model
-trainlambda: does training of lambda values for lsa-ngram interpolation
-doccluster: document cluster center file
-dumpfeat: dump similarity features, needs doccluster
-mindumpsim: minimum similarity for counting as feature

112



A.2 Usage

A.2.3 Data format

Term.entrop file format

4 2 words singval
0.0022 0.0023 singval1 singval2
i 0.9384 0.0000 -0.0001 word entropy wvecval1 wvecval2
think 0.0000 0.0000 -0.0000 - - - -
this 0.9384 0.0000 -0.0001 - - - -
works 0.0000 0.0000 -0.0000 - - - -

Binmodel file format

3 bins
-0.184038 2.07123e-06 end of similarity interval bin probability
0.234566 3,40712e-06 - -
0.999516 4.07123e-02 - -

If the similarity is bigger than the last interval boundary, the last intervals bin prob-
ability is used.

Doc-cluster file format

3 2 cluster centers docvecvalues
0.000003 -0.000142 docvecvalue1 docvecvalue2
0.000003 -0.000002 - -
0.000003 -0.000142 - -

A.2.4 HTML output

When lsalm is used with the -html option it produces HyperText Markup Language
(HTML) output of the following style:

we did not talk about pipes
p( we | ) = [2gram] [0.0115263] 0.0131275 [ -1.88182 ]
meet-th: 0.005114 fisher: 0.008618 web: 0.025500
p( did | we ...) = [3gram] [0.0129977] 0.0147011 [ -1.83265 ]
meet-th: 0.007520 fisher: 0.009937 web: 0.035061
p( not | did ...) = [4gram] [0.108605] 0.103255 [ -0.986088 ]
meet-th: 0.004505 fisher: 0.004057 web: 0.018205
p( talk | not ...) = [3gram] [0.000583654] 0.000588433 [ -3.2303 ]
meet-th: 0.014041 fisher: 0.016797 web: 0.039907
p( about | talk ...) = [3gram] [0.299694] 0.267013 [ -0.573467 ]
meet-th: 0.005322 fisher: 0.004451 web: 0.021566
p( pipes | about ...) = [2gram] [4.84618e-06] 4.07627e-06 [ -5.38974 ]
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fisher: 0.168330 web: 0.122102
p( | pipes ...) = [2gram] [0.0664626] 0.0723812 [ -1.14037 ]
1 sentences, 6 words, 0 OOVs 0 zeroprobs, logprob= -15.0344 ppl= 140.532
ppl1= 320.435

Light green means that the LSA model is better than the n-gram (very good),
dark green means that the LSA model is better, but the word already appears in the
context, e.g. it is a cache model effect (good).

If the whole document is taken as the context (not -initsent) then there are a lot
of repetitions although words that are far away will have no effect due to the -decay.

Dark red means that the LSA model is worse than the n-gram (bad). Light red
means that the LSA model is worse than the n-gram and that the word already
appears in the context (very bad).
meet-th: 0.005114 fisher: 0.008618 web: 0.025500 are the lambdas (for

infg interpolation) for the different models named meet-th, fisher and web, respec-
tively.
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